CuO, MgO, and ZrO2 Loading on HZSM5 by Deposition-precipitation: Study of Crystallinity, Specific Surface Area, and Morphology
Rizky Ibnufaatih Arvianto(1), Anatta Wahyu Budiman(2*), Khoirina Dwi Nugrahaningtyas(3)
(1) Department of Chemical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia
(2) Department of Chemical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia
(3) Department of Chemistry, Faculty of Natural Sciences and Mathematics, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Medford, A.J., Vojvodic, A., Hummelshøj, J.S., Voss, J., Abild-Pedersen, F., Studt, F., Bligaard, T., Nilsson, A., and Nørskov, J.K., 2015, From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis, J. Catal., 328, 36–42.
[2] Kartohardjono, S., Adji, B.S., and Muharam, Y., 2020, CO2 utilization process simulation for enhancing production of dimethyl ether (DME), Int. J. Chem. Eng., 2020, 9716417.
[3] Kristiani, A., Sudiyarmanto, S., Aulia, F., Nurul Hidayati, L., and Abimanyu, H., 2017, Metal supported on natural zeolite as catalysts for conversion of ethanol to gasoline, MATEC Web Conf., 101, 01001.
[4] Din, I.U., Alotaibi, M.A., and Alharthi, A.I., 2020, Green synthesis of methanol over zeolite based Cu nano-catalysts, effect of Mg promoter, Sustainable Chem. Pharm., 16, 100264.
[5] Frusteri, L., Bonura, G., Cannilla, C., Todaro, S., Giordano, G., Migliori, M., and Frusteri, F., 2020, Promoting direct CO2 conversion to DME over zeolite-based hybrid catalysts, Pet. Chem., 60 (4), 508–515.
[6] Frusteri, F., Migliori, M., Cannilla, C., Frusteri, L., Catizzone, E., Aloise, A., Giordano, G., and Bonura, G., 2017, Direct CO2-to-DME hydrogenation reaction: New evidences of a superior behaviour of FER-based hybrid systems to obtain high DME yield, J. CO2 Util., 18, 353–361.
[7] Liu, Y., and Lu, H., 2020, Synthesis of ZSM-5 zeolite from fly ash and its adsorption of phenol, quinoline and indole in aqueous solution, Mater. Res. Express, 7 (5), 055506.
[8] Jiang, Q., Liu, Y., Dintzer, T., Luo, J., Parkhomenko, K., and Roger, A.C., 2020, Tuning the highly dispersed metallic Cu species via manipulating Brønsted acid sites of mesoporous aluminosilicate support for CO2 hydrogenation reactions, Appl. Catal., B, 269, 118804.
[9] Chen, D., Mao, D., Wang, G., Guo, X., and Yu, J., 2019, CO2 hydrogenation to methanol over CuO-ZnO-ZrO2 catalyst prepared by polymeric precursor method, J. Sol-Gel Sci. Technol., 89 (3), 686–699.
[10] Yanti, F.M., Valentino, N., Juwita, A.R., Murti, S.D.S., Pertiwi, A., Rahmawati, N., Rini, T.P., Sholihah, A., Prasetyo, J., Saputra, H., Iguchi, S., and Noda, R., 2020, Methanol production from biomass syngas using Cu/ZnO/Al2O3 catalyst, AIP Conf. Proc., 2223, 020006.
[11] Ren, S., Fan, X., Shang, Z., Shoemaker, W.R., Ma, L., Wu, T., Li, S., Klinghoffer, N.B., Yu, M., and Liang, X., 2020, Enhanced catalytic performance of Zr modified CuO/ZnO/Al2O3 catalyst for methanol and DME synthesis via CO2 hydrogenation, J. CO2 Util., 36, 82–95.
[12] Asthana, S., Samanta, C., Bhaumik, A., Banerjee, B., Voolapalli, R.K., and Saha, B., 2016, Direct synthesis of dimethyl ether from syngas over Cu-based catalysts: Enhanced selectivity in the presence of MgO, J. Catal., 334, 89–101.
[13] Palomo, J., Rodríguez-Mirasol, J., and Cordero, T., 2019, Methanol dehydration to dimethyl ether on Zr-loaded P-containing mesoporous activated carbon catalysts, Materials, 12 (13), 2204.
[14] Cheng, K., Zhou, W., Kang, J., He, S., Shi, S., Zhang, Q., Pan, Y., Wen, W., and Wang, Y., 2017, Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability, Chem, 3 (2), 334–347.
[15] Widayat, W., and Annisa, A.N., 2017, Synthesis and characterization of ZSM-5 catalyst at different temperatures, IOP Conf. Ser.: Mater. Sci. Eng., 214, 012032.
[16] Barton, R.R., Carrier, M., Segura, C., Fierro, J.L.G., Escalona, N., and Peretti, S.W., 2017, Ni/HZSM-5 catalyst preparation by deposition-precipitation. Part 1. Effect of nickel loading and preparation conditions on catalyst properties, Appl. Catal., A, 540, 7–20.
[17] Munnik, P., de Jongh, P.E., and de Jong, K.P., 2015, Recent developments in the synthesis of supported catalysts, Chem. Rev., 115 (14), 6687–6718.
[18] Abdullah, M., and Khairurrijal, K., 2009, A simple method for determining surface porosity based on SEM images using OriginPro software, Indones. J. Phys., 20 (2), 37–40.
[19] Hennemann, M., Gastl, M., and Becker, T., 2021, Optical method for porosity determination to prove the stamp effect in filter cakes, J. Food Eng., 293, 110405.
[20] Saraf, S., Singh, A., and Desai, B.G., 2019, Estimation of porosity and pore size distribution from scanning electron microscope image data of shale samples: A case study on Jhuran formation of Kachchh Basin, India, ASEG Extended Abstracts, 2019 (1), 1–3.
[21] Xu, Y., Liu, J., Ma, G., Wang, J., Lin, J., Wang, H., Zhang, C., and Ding, M., 2018, Effect of iron loading on acidity and performance of Fe/HZSM-5 catalyst for direct synthesis of aromatics from syngas, Fuel, 228, 1–9.
[22] Lin, B., Wang, J., Huang, Q., Ali, M., and Chi, Y., 2017, Aromatic recovery from distillate oil of oily sludge through catalytic pyrolysis over Zn modified HZSM-5 zeolites, J. Anal. Appl. Pyrolysis, 128, 291–303.
[23] Tursunov, O., Kustov, L., and Tilyabaev, Z., 2019, Catalytic activity of H-ZSM-5 and Cu-HZSM-5 zeolites of medium SiO2/Al2O3 ratio in conversion of n-hexane to aromatics, J. Pet. Sci. Eng., 180, 773–778.
[24] Magomedova, M., Galanova, E., Davidov, I., Afokin, M., and Maximov, A., 2019, Dimethyl ether to olefins over modified ZSM-5 based catalysts stabilized by hydrothermal treatment, Catalysts, 9 (5), 485.
[25] Nugrahaningtyas, K.D., Putri, M.M., and Saraswati, T.E., 2020, Metal phase and electron density of transition metal/HZSM-5, AIP Conf. Proc., 2237, 020003.
[26] Ozaki, Y., Suzuki, Y., Hawai, T., Saito, K., Onishi, M., and Ono, K., 2020, Automated crystal structure analysis based on blackbox optimisation, Npj Comput. Mater., 6 (1), 75.
[27] Amin, M.H., Putla, S., Bee Abd Hamid, S., and Bhargava, S.K., 2015, Understanding the role of lanthanide promoters on the structure-activity of nanosized Ni/γ-Al2O3 catalysts in carbon dioxide reforming of methane, Appl. Catal., A, 492, 160–168.
[28] Rodríguez-Martínez, C., García-Domínguez, Á.E., Guerrero-Robles, F., Saavedra-Díaz, R.O., Torres-Torres, G., Felipe, C., Ojeda-López, R., Silahua-Pavón, A., and Cervantes-Uribe, A., 2020, Synthesis of supported metal nanoparticles (Au/TiO2) by the suspension impregnation method, J. Compos. Sci., 4 (3), 89.
[29] Liu, N., Chen, G., Dong, W., Liu, C., and Xu, C., 2017, Preparation of Au nanoparticles with high dispersion and thermal stability by a controlled impregnation method for alcohol oxidation, Gold Bull., 50 (2), 163–175.
[30] Brazovskaya, E.Y., and Golubeva, O.Y., 2017, Study of the effect of isomorphic substitutions in the framework of zeolites with a Beta structure on their porosity and sorption characteristics, Glass Phys. Chem., 43 (4), 357–362.
[31] Fakruldin, A., Ramli, A., and Abdul Mutalib, M.I., 2018, Effect of preparation method on physicochemical properties of Fe/zeolite catalyst, J. Phys.: Conf. Ser., 1123, 012061.
[32] Błaszczak, P., Mizera, A., Bochentyn, B., Wang, S.F., and Jasiński, P., 2022, Preparation of methanation catalysts for high temperature SOEC by β-cyclodextrin-assisted impregnation of nano-CeO2 with transition metal oxides, Int. J. Hydrogen Energy, 47 (3), 1901–1916.
DOI: https://doi.org/10.22146/ijc.72255
Article Metrics
Abstract views : 2603 | views : 1661Copyright (c) 2022 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.