Adsorption of Pb(II) on Calix[4]arene Derivatives: Kinetics and Isotherm Studies

https://doi.org/10.22146/ijc.70665

Busroni Busroni(1*), Dwi Siswanta(2), Jumina Jumina(3), Sri Juari Santosa(4), Chairil Anwar(5)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Jember University, Jl. Kalimantan 37, Jember 681752, East Java, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


This study aims to investigate the application of two calix[4]arene derivatives named 5,11,17,23-tetra-(t-butyl)-25,26,27,28-tetrahydroxycalix[4]arene (TBCA) and 5,11,17,23-tetra-(t-butyl)-26,27,28-tribenzoyloxycalix[4]arene (TBMTCA) as adsorbents of Pb(II) from aqueous solution in a batch system. Adsorption was carried out by varying pH solution, exposure time, and concentration. The kinetics was evaluated based on the adsorption in various exposure times using the Lagergren and Ho equations, while the isotherms were analyzed based on the adsorption in various Pb(II) concentrations using the Langmuir and Freundlich equations. Furthermore, the isotherm model showed the Pb(II) adsorption of TBCA and TBMTCA followed Langmuir model with a capacity of 137.29 and 128.46 mg/g, respectively. Based on the adsorption capacity, both adsorbents are the potential for the removal of heavy metal cations from polluted water.


Keywords


TBCA; TBMTCA; adsorption capacity; kinetic; isotherm

Full Text:

Full Text PDF


References

[1] Arifin, Z., Puspitasari, R., and Miazaki, N., 2012, Heavy metal contaminations in Indonesian coastal marine ecosystems: A historical perspective, Coastal Mar. Sci., 35 (1), 227–233.

[2] Hoang V.A., Nashihama, S., and Yoshizuka, K., 2021, Selective adsorption of lead(II) from aqueous, Environ. Technol., 43 (14), 2124–2134.

[3] Flora, G., Gupta, D., and Tiwari, A., 2012, Toxicity of lead: A review with recent updates, Interdicip. Toxicol., 5 (2), 47–58.

[4] Kurniawan, Y.S., Ryu, M., Sathuluri, R.R., Iwasaki, W., Morisada, S., Kawakita, H., Ohto, K., Maeki, M., Miyasaki, M., and Jumina, J., 2019, Separation of Pb(II) ion with tetraacetic acid derivative of calix[4]arene by using droplet-based microreactor system, Indones. J. Chem., 19 (2), 368–375.

[5] Salihi, I.U., Kutty, S.R.M., and Isa, M.H., 2017, Adsorption of lead ions onto activated carbon derived from sugarcane bagasse, IOP Conf. Ser.: Mater. Sci. Eng., 201, 012034.

[6] Elçin, S., Karakuş, O.O., Kara, İ., and Deligöz, H., 2015, Synthesis and structural characterization of bisazocalix[4]arene with melamine: Metal ion extraction studies, J. Mol. Liq., 202, 134–140.

[7] Utomo, S.B., Jumina, J., Siswanta, D., and Mustofa, M., 2012, Kinetic and equilibrium model of Pb(II) and Cd(II) adsorption tetrakis-thiomethyl-C-methoxyphenylcalix[4]resorcinarene, Indones. J. Chem., 12 (1), 49–56.

[8] Jlassi, K., Abidi, R., Benna, M., Chehimi, M.M., Kasak, P., and Krupa, I., 2018, Bentonite-decorated calix[4]arene: A new, promising hybrid material for heavy-metal removal, Appl. Clay Sci., 161, 15–22.

[9] Chen, X., 2015, Modeling of experimental adsorption isotherm data, Information, 6 (1), 14–22.

[10] Sugita, P., Purwaningsih, H., and Fathurrahman, M., 2015, Adsorption studies of Fe(III) ion on glutaraldehyde cross-linked chitosan and its application in purifying vetiver oil, Int. J. Chem. Sci., 13 (4), 1805–1817.

[11] Tashauoei, H.R., Hashemi, S., Ardani, R., Yavari, Z., and Asadi-Ghalhari, M., 2016, Adsorption of lead from aqueous solution by modified beech sawdust, J. Saf. Environ. Health Res., 1 (1), 11–16.

[12] Kesuma, E.P., Jumina, J., Ohto, K., and Siswanta, D., 2016, Synthesis of C-4-allyloxy-3-methoxyphenylcalix[4]resorcinarene from vanillin and its application as adsorbent of Pb(II) metal cation, Orient. J. Chem., 32 (2), 769–775.

[13] Kamboh, M.A., Wan Ibrahim, W.A., Rashidi Nodeh, H., Zardani, L.A., and Sanagi, M.M., 2018, Fabrication of calixarene-grafted magnetic nanocomposite for the effective removal of lead(II) from aqueous solution, Environ. Technol., 40 (19), 2482–2493.

[14] Alghamdi, A.A., Al-Odayni, A.B., Saeed, W.S., Al-Kahtani, A., Alharthi, F.A., and Aouak, T., 2019, Efficient adsorption of lead(II) from aqueous phase solutions using polypyrrole-based activated carbon, Materials, 12 (12), 2020.

[15] Gu, S., Wang, L., Mao, X., Yang, L., and Wang, C., 2018, Selective adsorption of Pb(II) from aqueous solution by triethylenetetramine-grafted polyacrylamide/vermiculite, Materials, 11 (4), 514.

[16] Busroni, B., Siswanta, D., Santosa, S.J., and Jumina, J., 2017, Study of Pb(II) and Fe(III) metal cations adsorption into p-tert-butylcalix[4]arene as adsorbent: Kinetic adsorption, Int. J. Adv. Res., 5 (9), 574–580.

[17] Moradi, O., Zare, K., Zekri, A.R., and Fakhri, A., 2012, Experimental modeling of the adsorption kinetics of Cd(II) and Pb(II) ions by calix[4]arene surface, J. Phys. Theor. Chem., 9 (2), 67–76.

[18] Kim, J.M., Chun, J.C., and Nam, K.C., 1997, Selective acyl and alkylation of monobenzoyl-p-tert-butylcalix[4]arene, Bull. Korean Chem. Soc., 18 (4), 409–415.

[19] Handayani, D.S., Jumina, J., Siswanta, D., and Mustofa, M., 2012, Adsorpsi ion logam Pb(II), Cd(II) dan Cr(III) oleh poli-5-allil-kaliks[4]arena tetraester, JML, 19 (3), 218–225.

[20] Araki, K., Iwamoto, K., Shinkai, S., and Matsuda, T., 1990, "pKa" of Calixarenes and analogs in nonaqueous solvents, Bull. Chem. Soc. Jpn., 63 (12), 3480–3485.

[21] Pearson, R.G., 1963, Hard and soft acids and bases, J. Am. Chem. Soc., 85 (22), 3533–3539.

[22] LoPachin, R.M., Gavin, T., DeCaprio, A., and Barber, D.S., 2012, Application of the hard and soft, acid and bases (HSAB) theory to toxicant–Target Interactions, Chem. Res. Toxicol., 25 (2), 239-251.

[23] Ho, Y.S., and McKay, G., 1999, Pseudo-second order model for sorption processes, Process Biochem., 34 (5), 451–465.

[24] Ho, Y.S., 2004, Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientometrics, 59 (1), 171–177.

[25] Konczyk, J., Nowik-Zajac, A., and Kozlowski, C.A., 2016, Calixarene-based extractants for heavy metal ions removal from aqueous solutions, Sep. Sci. Technol., 51 (14), 2394–2410.

[26] Rosly, N.Z., Abdullah, A.H., Kamarudin, M.A., Ashari, S.E., and Ahmad, S.A.A., 2021, Adsorption of methylene blue dye by calix[6]arene-modified lead sulphide (Pbs): Optimisation using response surface methodology, Int. J. Environ. Res. Public Health, 18 (2), 397.

[27] Musumba, G., Nakiguli, C., Lubanga, C., Mukasa, P., and Ntambi, E., 2020, Adsorption of lead(II) and copper(II) ions from mono synthetic aqueous solutions using bio-char from Ficus natalensis fruits, J. Encapsulation Adsorpt. Sci., 10, 71–84.

[28] Priastomo, Y., Morisada, S., Kawakita, H., Ohto, K., and Jumina, J., 2021, Improved precious metal adsorption by introduction of carboxylic acid groups on methylene crosslinked calix[4]arene resin matrix, J. Inclusion Phenom. Macrocyclic Chem., 101 (1), 51–61.

[29] Olaremu, A.G., 2021, Adsorption of lead from aqueous solution by pulverized local clay, Scholar Int. J. Chem. Mater. Sci., 4 (5), 73–78.

[30] Malise, L., Rutto, H., Seodigeng, T., Sibali, L., and Ndibewu, P., 2020, Adsorption of lead ions onto chemical activated carbon derived from waste tire pyrolysis Char: Equilibrium and kinetics studies, Chem. Eng. Trans., 82, 421–426.

[31] Cataldo, S., Lo Meo, P., Conte, P., Di Vincenzo, A., Milea, D., and Pettignano, A., 2021, Evaluation of adsorption ability of cyclodextrin-calixarene nanosponges towards Pb2+ ion in aqueous solution, Carbohydr. Polym., 267, 118151.



DOI: https://doi.org/10.22146/ijc.70665

Article Metrics

Abstract views : 2293 | views : 1551


Copyright (c) 2022 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.