Development of Arduino Uno-Based TCS3200 Color Sensor and Its Application on the Determination of Rhodamine B Level in Syrup
Muhammad Syukri Surbakti(1), Muhammad Farhan(2), Zakaria Zakaria(3), Muhammad Isa(4), Elly Sufriadi(5), Sagir Alva(6), Elin Yusibani(7), Leni Heliawati(8), Muhammad Iqhrammullah(9), Khairi Suhud(10*)
(1) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
(3) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
(4) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
(6) Department of Mechanical Engineering, Faculty of Engineering, Mercubuana University, Jakarta 11650, Indonesia
(7) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
(8) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Ibnu Khaldun University, Bogor 16162, Indonesia
(9) Graduate School of Mathematics and Applied Science, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
(10) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
(*) Corresponding Author
Abstract
The use of the notorious synthetic dye, rhodamine B, in food and beverage products has been widely reported. This application urges the need to develop an analytical method that can provide reliable rhodamine B data with an easy operational technique. Therefore, this research is aimed to develop an Arduino Uno-based TCS3200 color sensor and study its application to determine rhodamine B levels in syrup. The design of the analytical instrument included TCS3200, an Arduino Uno microcomputer, an Integrated Development Environment (IDE) software, a black box container, and a 24 × 2 matrix display screen, where samples were prepared via absorption using wool thread. With a linear range of 1–20 mg/L, our proposed colorimetric sensor had recoveries of 96.25–110.3%, which was better compared to that was obtained from the UV-vis (81.8–100.6%) method. The detection and quantification limits of the sensor were 2.766 and 8.383 mg/L, respectively. The syrup samples used in this study were purchased from the local stores in Banda Aceh. Based on the proposed TCS3200 color sensor, the highest rhodamine B concentration from the syrup sample was 16.74 mg/L. The t-test analysis in this study revealed that the Rhodamine B levels quantified using the newly developed TCS3200 color sensor were not statistically or significantly different from the UV-Vis spectrophotometer method.
Keywords
Full Text:
Full Text PDFReferences
[1] Nazaruddin, N., Afifah, N., Bahi, M., Susilawati, S., MD Sani, N.D., Esmaeili, C., Iqhrammullah, M., Murniana, M., Hasanah, U., and Safitri, E., 2021, A simple optical pH sensor based on pectin and Ruellia tuberosa L-derived anthocyanin for fish freshness monitoring, F1000Research, 10, 422.
[2] Hasanah, U., Setyowati, M., Efendi, R., Muslem, M., Md Sani, N.D., Safitri, E., Yook Heng, L., and Idroes, R., 2019, Preparation and characterization of a pectin membrane-based optical pH sensor for fish freshness monitoring, Biosensors, 9 (2), 60.
[3] Safitri, E., Humaira, H., Murniana, M., Nazaruddin, N., Iqhrammullah, M., Md Sani, N.D., Esmaeili, C., Susilawati, S.L., Mahathir, M., and Nazaruddin, S.L., 2021, Optical pH Sensor based on immobilization anthocyanin from Dioscorea alata L. onto polyelectrolyte complex pectin–chitosan membrane for a determination method of salivary pH, Polymers, 13 (8), 1276.
[4] Rahayu, W.S., Rohman, A., Martono, S., and Sudjadi, S., 2018, Application of FTIR spectroscopy and chemometrics for halal authentication of beef meatball adulterated with dog meat, Indones. J. Chem., 18 (2), 376–381.
[5] Rohaeti, E., Muzayanah, K., Septaningsih, D.A., and Rafi, M., 2019, Fast analytical method for authentication of chili powder from synthetic dyes using UV-Vis spectroscopy in combination with chemometrics, Indones. J. Chem., 19 (3), 668–674.
[6] Olas, B., Białecki, J., Urbańska, K., and Bryś, M., 2021, The effects of natural and synthetic blue dyes on human health: A review of current knowledge and therapeutic perspectives, Adv. Nutr., 12 (6), 2301–2311.
[7] Jannah, O.Z., Suwita, K., and Jayadi, L., 2021, Analisis pewarna rhodamin b dan pengawet natrium benzoat pada saus tomat yang diperdagangkan di pasar besar tradisional kota Malang, Jurnal Riset Kefarmasian Indonesia, 3 (1), 10–17.
[8] Morsi, R.E., Elsawy, M., Manet, I., and Ventura, B., 2020, Cellulose acetate fabrics loaded with rhodamine B hydrazide for optical detection of Cu(II), Molecules, 25 (16), 3751.
[9] Patil, A., and Salunke-Gawali, S., 2018, Overview of the chemosensor ligands used for selective detection of anions and metal ions (Zn2+, Cu2+, Ni2+, Co2+, Fe2+, Hg2+), Inorg. Chim. Acta, 482, 99–112.
[10] Setiyanto, H., Ferizal, F., Saraswaty, V., Rahayu, R.S., and Zulfikar, M.A., 2021, Carbon paste electrode modified Poly-Glutamic Acid (PGA) with molecularly imprinted for detection of Rhodamine B, IOP Conf. Ser.: Mater. Sci. Eng., 1088, 012113.
[11] Tonica, W.W., Hardianti, M.F., Prasetya, S.A., and Rachmaniah, O., 2018, Determination of Rhodamine-B and Amaranth in snacks at primary school Sukolilo district of Surabaya-Indonesia by thin layer chromatography, AIP Conf. Proc., 2049, 020043.
[12] He, Q., Liu, J., Xia, Y., Tuo, D., Deng, P., Tian, Y., Wu, Y., Li, G., and Chen, D., 2019, Rapid and sensitive voltammetric detection of Rhodamine B in chili-containing foodstuffs using MnO2 nanorods/electro-reduced graphene oxide composite, J. Electrochem. Soc., 166, B805.
[13] Muzdhalifah, B., Sudewi, S., and Citraningtyas, G., 2019, Analisis pewarna Rhodamin B pada saos bakso tusuk yang beredar di beberapa sekolah dasar di kota Manado, Pharmacon, 8 (1), 120–126.
[14] Singh, H., Singh, G., Mahajan, D.K., Kaur, N., and Singh, N., 2020, A low-cost device for rapid ‘color to concentration’ quantification of cyanide in real samples using paper-based sensing chip, Sens. Actuators, B, 322, 128622.
[15] Riskiawan, H.Y., Rizaldi, T., Setyohadi, D.P.S., and Leksono, T., 2017, Nitrogen (N) fertilizer measuring instrument on maize-based plant microcontroller, Proceedings of the 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Yogyakarta, Indonesia 19-21 September 2017, 1–4.
[16] Fitri, Z., Adlim, M., Surbakti, M.S., Omar, A.F., Sijabat, F.A., and Syahreza, S., 2019, Mercury (II) ions assessment as a toxic waste hazard in solution based on imagery data for a part of environmental disaster management, IOP Conf. Ser.: Earth Environ., 273, 012052.
[17] Amirjani, A., and Fatmehsari, D.H., 2018, Colorimetric detection of ammonia using smartphones based on localized surface plasmon resonance of silver nanoparticles, Talanta, 176, 242–246.
[18] Amirjani, A., and Rahbarimehr, E., 2021, Recent advances in functionalization of plasmonic nanostructures for optical sensing, Microchim. Acta, 188 (2), 57.
[19] Kesuma, S., 2020, Pengembangan metode penentuan kandungan Rhodamine B dalam kerupuk berwarna merah menggunakan reagen Zn(CNS)2 dan pencitraan digital, MEDFARM: Jurnal Farmasi dan Kesehatan, 9 (2), 63–72.
[20] Brambilla, M., Romano, E., Buccheri, M., Cutini, M., Toscano, P., Cacini, S., Massa, D., Ferri, S., Monarca, D., Fedrizzi, M., Burchi, G., and Bisaglia, C., 2021, Application of a low-cost RGB sensor to detect basil (Ocimum basilicum L.) nutritional status at pilot scale level, Precis. Agric., 22 (3), 734–753.
[21] Rusman, J., Michael, A., and Pasae, N., 2021, Deteksi tingkat kematangan buah kopi arabika menggunakan sensor TCS3200 berbasis Arduino Uno, Dynamicsaint, 6, 60–66.
[22] Singh, A.K., and Jha, S.K., 2019, Fabrication and validation of a handheld non-invasive, optical biosensor for self-monitoring of glucose using saliva, IEEE Sens. J., 19 (18), 8332–8339.
[23] Gupta, S.K., Tapadia, K., and Sharma, A., 2020, Selective fluorometric analysis of Hg(II) in industrial waste water samples, J. Fluoresc., 30 (6), 1375–1381.
[24] Kumalasari, E., 2015, Identifikasi Rhodamin B dalam kerupuk berwarna merah yang beredar di pasar Antasari kota Banjarmasin, Jurnal Ilmiah Manuntung, 1 (1), 85–89.
[25] Wei, B., Chen, Q.Y., Chen, G., Tang, R.C., and Zhang, J., 2013, Adsorption properties of lac dyes on wool, silk, and nylon, J. Chem., 2013, 546839.
[26] Rahmi, R., Lubis, S., Az-Zahra, N., Puspita, K., and Iqhrammullah, M., 2021, Synergetic photocatalytic and adsorptive removals of metanil yellow using TiO2/grass-derived cellulose/chitosan (TiO2/GC/CH) film composite, Int. J. Eng., 34 (8), 1827–1836.
[27] Fathana, H., Iqhramullah, M., Rahmi, R., Adlim, M., and Lubis, S., 2021, Tofu wastewater-derived amino acids identification using LC-MS/MS and their uses in the modification of chitosan/TiO2 film composite, Chem. Data Collect., 35, 100754.
[28] Rahmi, R., Iqhrammullah, M., Audina, U., Husin, H., and Fathana, H., 2021, Adsorptive removal of Cd (II) using oil palm empty fruit bunch-based charcoal/chitosan-EDTA film composite, Sustainable Chem. Pharm., 21, 100449.
[29] Iwanto, I., Suryadi, D., and Priyatman, H., 2018, Rancang bangun alat pendeteksi kadar boraks pada makanan menggunakan sensor warna TCS3200 berbasis Arduino, Jurnal Teknik Elektro Universitas Tanjungpura, 2 (1), 1–9.
[30] Potash, A.D., Greene, D.U., Foursa, G.A., Mathis, V.L., Conner, L.M., and McCleery, R.A., 2020, A comparison of animal color measurements using a commercially available digital color sensor and photograph analysis, Curr. Zool., 66 (6), 601–606.
[31] Zhang, Y.S., Balamurugan, R., Lin, J.C., Fitriyani, S., Liu, J.H., and Emelyanenko, A., 2017, Pd2+ fluorescent sensors based on amino and imino derivatives of rhodamine and improvement of water solubility by the formation of inclusion complexes with β-cyclodextrin, Analyst, 142 (9), 1536–1544.
[32] Harmita, H., 2004, Petunjuk pelaksanaan validasi metodean cara perhitungan, Majalah Ilmu Kefarmasian, 1 (3), 117–135.
[33] Iqhrammullah, M., Suyanto, H., Rahmi, R., Pardede, M., Karnadi, I., Kurniawan, K.H., Chiari, W., and Abdulmadjid, S.N., 2021, Cellulose acetate-polyurethane film adsorbent with analyte enrichment for in-situ detection and analysis of aqueous Pb using Laser-Induced Breakdown Spectroscopy (LIBS), Environ. Nanotechnol. Monit. Manage., 16, 100516.
[34] Gičević, A., Hindija, L., and Karačić, A., 2020, "Toxicity of Azo Dyes in Pharmaceutical Industry" in CMBEBIH 2019, IFMBE Proceedings, vol. 73, Badnjevic, A., Škrbić, R., and Gurbeta Pokvić, L., Eds., Springer, Cham, 581–587.
DOI: https://doi.org/10.22146/ijc.69214
Article Metrics
Abstract views : 5453 | views : 3381Copyright (c) 2022 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.