Selecting Suitable Functionals and Basis Sets on the Study Structural and Adsorption of Urea-Kaolinite System Using Cluster Method

https://doi.org/10.22146/ijc.68599

Nur Najwa-Alyani Mohd Nabil(1), Lee Sin Ang(2*)

(1) Faculty of Applied Sciences, Universiti Teknologi MARA, 02600 Arau, Perlis, Malaysia
(2) Faculty of Applied Sciences, Universiti Teknologi MARA, 02600 Arau, Perlis, Malaysia
(*) Corresponding Author

Abstract


Kaolinite is an essential mineral with numerous applications across many sectors. One of them is in the agricultural industry, in which it is a crucial component in the method of controlled-release fertilizer. This manuscript reports the use of different functionals and basis sets on the structural and electronic properties of kaolinite's surface, intending to find reliable methods among those tested. Four different functionals, B3LYP, CAM-B3LYP, M06-2X, TPSSTPSS, complemented with various basis sets, were used in this study. The results show that TPSSTPSS complement with 6-311G** provides good agreement with previous research and experimental results among different functionals and basis sets used. The quantitative analysis was done to optimize the kaolinite molecule. Selected extrema points were used to place the urea molecule for the interaction of urea-kaolinite studies. The urea's interaction with kaolinite was reported at a different interaction site in the gas phase and different orientations of the urea molecule. Urea molecule was optimized above the Al–O and Si–O surfaces with their energy difference calculated. Our results showed that both surfaces act as promising adsorbents among the different orientations of the urea on both the Al–O and Si–O surfaces. However, Al–O, and Si–O had another preferable interaction site to the urea molecules.

Keywords


Density functional theory; kaolinite; urea; electrostatic potential surface; kaolinite-urea interaction

Full Text:

Full Text PDF


References

[1] Zhang, S., Liu, Q., Cheng, H., and Zeng, F., 2015, Combined experimental and theoretical investigation of interactions between kaolinite inner surface and intercalated dimethyl sulfoxide, Appl. Surf. Sci., 331, 234–240.

[2] Zhang, S., Liu, Q., Gao, F., Li, X., Liu, C., Li, H., Boyd, S.A., Johnston, C.T., and Teppen, B.J., 2017, Mechanism associated with kaolinite intercalation with urea: Combination of infrared spectroscopy and molecular dynamics simulation studies, J. Phys. Chem. C, 121 (1), 402–409.

[3] Makó, É., Kovács, A., Katona, R., and Kristóf, T., 2016, Characterization of kaolinite-cetyltrimethylammonium chloride intercalation complex synthesized through eco-friend kaolinite-urea pre-intercalation complex, Colloids Surf., A, 508, 265–273.

[4] Táborosi, A., Kurdi, R., and Szilágyi, R.K., 2014, Adsorption and intercalation of small molecules on kaolinite from molecular modelling studies, Hung. J. Ind. Chem., 42 (1), 19–23.

[5] Zhang, S., Gao, N., and Liu, K., 2021, Insights on the intercalation mechanism of the coal-bearing kaolinite intercalation based on experimental investigation and molecular dynamics simulations, Chem. Pap., 75 (12), 6335–6344.

[6] Azeem, B., KuShaari, K., Man, Z.B., Basit, A., and Thanh, T.H., 2014, Review on materials & methods to produce controlled release coated urea fertilizer, J. Controlled Release, 181, 11–21.

[7] Roshanravan, B., Mahmoud-Soltani, S., Mahdavi, F., Abdul Rashid, S., and Yusop, M.K., 2014, Preparation of encapsulated urea-kaolinite controlled release fertiliser and their effect on rice productivity, Chem. Speciation Bioavailability, 26 (4), 249–256.

[8] Sempeho, S.I., Kim, H.T., Mubofu, E., Pogrebnoi, A., Shao, G., and Hilonga, A., 2015, Dynamics of kaolinite-urea nanocomposites via coupled DMSO-hydroxyaluminum oligomeric intermediates, Indian J. Eng. Mater. Sci., 2015, 920835.

[9] Vejan, P., Khadiran, T., Abdullah, R., and Ahmad, N., 2021, Controlled release fertilizer: A review on developments, applications and potential in agriculture, J. Controlled Release, 339, 321–334.

[10] Fariba, M., Suraya, A.R., and Yusop, M.K., 2014, Intercalation of urea into kaolinite for preparation of controlled release fertilizer, Chem. Ind. Chem. Eng. Q., 20 (2), 207–213.

[11] Roshanravan, B., Mahmoud-Soltani, S., Rashid, S.A., Mahdavi, F., and Yusop, M.K., 2015, Enhancement of nitrogen release properties of urea–kaolinite fertilizer with chitosan binder, Chem. Speciat. Bioavailab., 27 (1), 44–51.

[12] de Macedo Neto, J.C., do Nascimento, N.R., Bello, R.H., de Verçosa, L.A., Neto, J.E., da Costa, J.C.M., and Diaz, F.R.V., 2022, Kaolinite review: Intercalation and production of polymer nanocomposites, Eng. Sci., 17, 28–44.

[13] Brindley, G.W., and Robinson, K., 1946, The structure of kaolinite, Mineral. Mag. J. Mineral. Soc., 27 (194), 242–253.

[14] White, C.E., Provis, J.L., Riley, D.P., Kearley, G.J., van Deventer, J.S.J., 2009, What is the structure of kaolinite? reconciling theory and experiment, J. Phys. Chem. B, 113(19), 6756-6765.

[15] Bish, D.L., 1993, Rietveld refinement of the kaolinite structure at 1.5 K, Clays Clay Miner., 41 (6), 738–744.

[16] Hess, A.C., and Saunders, V.R., 1992, Periodic ab initio Hartree-Fock calculations of the low-symmetry mineral kaolinite, J. Phys. Chem., 96 (11), 4367–4374.

[17] Balan, E., Saitta, A.M., Mauri, F., and Calas, G., 2001, First-principles modeling of the infrared spectrum of kaolinite, Am. Mineral., 86 (11-12), 1321–1330.

[18] Castro, E.A.S., and Martins, J.B.L., 2005, Theoretical study of kaolinite, Int. J. Quantum Chem., 103 (5), 550–556.

[19] Tosoni, S., Doll, K., and Ugliengo, P., 2006, Hydrogen bond in layered materials: Structural and vibrational properties of kaolinite by a periodic B3LYP approach, Chem. Mater., 18 (8), 2135–2143.

[20] Hu, X.L., and Michaelides, A., 2008, Water on the hydroxylated (001) surface of kaolinite: From monomer adsorption to a flat 2D wetting layer, Surf Sci., 602 (4), 960–974.

[21] Karmous, M.S., 2011, Theoretical study of kaolinite structure; Energy minimization and crystal properties, World J. Nano Sci. Eng., 1 (2), 62–66.

[22] Heimann, J.E., Grimes, R.T., Rosenzweig, Z., and Bennett, J.W., 2021, A density functional theory (DFT) investigation of how small molecules and atmospheric pollutants relevant to art conservation adsorb on kaolinite, Appl. Clay Sci., 206, 106075.

[23] Hobbs, J.D., Cygan, R.T., Nagy, K.L., Schultz, P.A., and Sears, M.P., 1997, All-atom ab initio energy minimization of the kaolinite crystal structure, Am. Mineral., 82 (7-8), 657–662.

[24] Zhang, Z., Liu, J., Yang, Y., Shen, F., and Zhang, Z., 2018, Theoretical investigation of sodium capture mechanism on kaolinite surfaces, Fuel, 234, 318–325.

[25] Song, K.H., Zhong, M.J., Wang, L., Li, Y., and Qian, P., 2014, Theoretical study of interaction of amide molecules with kaolinite, Comput. Theor. Chem., 1050, 58–67.

[26] Zhang, C., Qi, Y.H., Qian, P., Zhong, M.J., Wang, L., and Yin, H.Z., 2014, Quantum chemical study of the adsorption of water molecules on kaolinite surfaces, Comput. Theor. Chem., 1046, 10–19.

[27] Song, K.H., Wang, X., Qian, P., Zhang, C., and Zhang, Q., 2013, Theoretical study of interaction of formamide with kaolinite, Comput. Theor. Chem., 1020, 72–80.

[28] Rutkai, G., Makó, É., and Kristóf, T., 2009, Simulation and experimental study of intercalation of urea in kaolinite, J. Colloid Interface Sci., 334 (1), 65–69.

[29] Wang, X., Qian, P., Song, K., Zhang, C., and Dong, J., 2013, The DFT study of adsorption of 2,4-dinitrotoluene on kaolinite surfaces, Comput. Theor. Chem., 1025, 16–23.

[30] Volkova, E., Narayanan Nair, A.K., Engelbrecht, J., Schwingenschlögl, U., Sun, S., and Stenchikov, G., 2021, Molecular dynamics modeling of kaolinite particle associations, J. Phys. Chem. C, 125 (43), 24126–24136.

[31] Frost, R.L., Tran, T.H., and Kristof, J., 2018, The structure of an intercalated ordered kaolinite - A Raman microscopy study, Clay Miner., 32 (4), 587–596.

[32] Frost, R.L., Kristof, J., Rintoul, L., and Kloprogge, J.T., 2000, Raman spectroscopy of urea and urea-intercalated kaolinites at 77 K, Spectrochim. Acta, Part A, 56 (9), 1681–1691.

[33] Cheng, H., Liu, Q., Yang, J., Ma, S., and Frost, R.L., 2012, The thermal behavior of kaolinite intercalation complexes-A review, Thermochim. Acta, 545, 1–13.

[34] Mohd Nabil, N.N.A., Mohd Zabidi, A.R., Abdullah, N.A.F., and Ang, L.S., 2017, Stability and electronic properties of urea in different arrangements: A DFT-based study, Jurnal Intelek, 12 (2), 44–54.

[35] Mohd Nabil, N.N.A., and Ang, L.S., 2017, Theoretical investigation of the lattice energy of urea: Insight from DFT using systematic cluster method, Malays. J. Fundam. Appl. Sci., 13 (4), 632–636.

[36] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., 2013, Gaussian-09 Revision D.01, Gaussian, Inc., Wallingford, CT.

[37] Yanai, T., Tew, D.P., and Handy, N.C., 2004, A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP), Chem. Phys. Lett., 393 (1-3), 51–57.

[38] Michalkova, A., Robinson, T.L., and Leszczynski, J., 2011, Adsorption of thymine and uracil on 1:1 clay mineral surfaces: Comprehensive ab initio study on influence of sodium cation and water, Phys. Chem. Chem. Phys., 13 (17), 7862–7881.

[39] Zhao, Y., and Truhlar, D.G., 2008, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc., 120 (1), 215–241.

[40] Kruse, H., and Grimme, S., 2012, A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems, J. Chem. Phys., 136 (15), 154101.

[41] Christensen, A.S., Kubař, T., Cui, Q., and Elstner, M., 2016, Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications, Chem. Rev., 116 (9), 5301–5337.

[42] Mohd Nabil, N.N.A., and Ang, L.S., 2019, Conformational and topology analysis of diphenylthiourea and diarylhalidethiourea compounds using DFT, Indones. J. Chem., 20 (2), 264–275.

[43] Benco, L., Tunega, D., Hafner, J., and Lischka, H., 2001, Orientation of OH groups in kaolinite and dickite: Ab initio molecular dynamics study, Am. Mineral., 86 (9), 1057–1065.

[44] Giese, R.F., and Datta, P., 1973, Hydroxyl orientation in kaolinite, dictite, and nacrite, Am. Mineral., 58 (5-6), 471–479.

[45] Liu, Q., Zhang, S., Cheng, H., Wang, D., Li, X., Hou, X., and Frost, R.L., 2014, Thermal behavior of kaolinite–urea intercalation complex and molecular dynamics simulation for urea molecule orientation, J. Therm. Anal. Calorim., 117 (1), 189–196.



DOI: https://doi.org/10.22146/ijc.68599

Article Metrics

Abstract views : 2395 | views : 1601


Copyright (c) 2022 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.