Solvatochromism and Theoretical Studies of Dicyanobis(phenylpyridine)iridium(III) Complex Using Density Functional Theory
Noorshida Mohd Ali(1*), Anthony J. H. M. Meijer(2), Michael D. Ward(3), Norlinda Daud(4), Norhayati Hashim(5), Illyas Md Isa(6)
(1) Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
(2) Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, United Kingdom
(3) Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
(4) Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
(5) Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
(6) Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
(*) Corresponding Author
Abstract
Luminescent cyanometallate [Ir(ppy)2(CN)2]– (ppy = C6H5C5H4N) has recently gained attention due to its desired photophysical properties. Our research group reported that the [Ir(ppy)2(CN)2]– has shown a negative solvatochromism like [Ru(bipy)(CN)4]2–, resulting in a blue-shift of the UV-Vis absorption bands in the water. Therefore, to gain insight into the specific solvent-solute interaction governed by the hydrogen bond in the solvation hydration shell, density functional theory (DFT) calculations were performed on the singlet ground state of the [Ir(ppy)2(CN)2]– and its solvent environment in the water at B3LYP level theory. It was demonstrated, seven water molecules provided a good description of the relevant spectra: IR and UV-Vis. The calculation reproduced the positions and intensities of the observed n(CºN) bands at 2069 and 2089 cm–1. The calculated MLCT transition wavelength was 366 nm vs. a measured value of 358 nm, differing by 8 nm. The study revealed the water molecules interacted with cyanide ligands through CN⋯H-OH type hydrogen bonds and water-water interactions (HO-H⋯OH2 type hydrogen bonds) were involved in the solvation hydration shell around the [Ir(ppy)2(CN)2]–.
Keywords
References
[1] Lee, S., and Han, W.S., 2020, Cyclometalated Ir(III) complexes towards blue-emissive dopant for organic light-emitting diodes: Fundamentals of photophysics and designing strategies, Inorg. Chem. Front., 7 (12), 2396–2422.
[2] Ali, N.M., Ward, M.D., Hashim, N., and Daud, N., 2019, Synthesis and photophysical properties of bis(phenylpyridine) iridium(III) dicyanide complexes, Mater. Res. Innovations, 23 (3), 135–140.
[3] Ali, N.M., MacLeod, V.L., Jennison, P., Sazanovich, I.V., Hunter, C.A., Weinstein, J.A., and Ward, M.D., 2012, Luminescent cyanometallates based on phenylpyridine-Ir(III) units: solvatochromism, metallochromism, and energy-transfer in Ir/Ln and Ir/Re complexes, Dalton Trans., 41 (8), 2408–2419.
[4] Pal, A.K., Henwood, A.F., Cordes, D.B., Slawin, A.M.Z., Samuel, I.D.W., and Zysman-Colman, E., 2017, Blue-to-green emitting neutral Ir(III) complexes bearing pentafluorosulfanyl groups: A combined experimental and theoretical study, Inorg. Chem., 56 (13), 7533–7544.
[5] Nazeeruddin, M.K., Humphry-Baker, R., Berner, D., Rivier, S., Zuppiroli, L., and Grätzel, M., 2003, Highly phosphorescence iridium complexes and their application in organic light-emitting devices, J. Am. Chem. Soc., 125 (29), 8790–8797.
[6] Sanner, R.D., Cherepy, N.J., and Young, V.G., 2016, Blue light emission from cyclometallated iridium(III) cyano complexes: Syntheses, crystal structures, and photophysical properties, Inorg. Chim. Acta, 440, 165–171.
[7] Martir, D.R., and Zysman-Colman, E., 2018, Supramolecular iridium(III) assemblies, Coord. Chem. Rev., 364, 86–117.
[8] Ward, M.D., 2010, Structural and photophysical properties of luminescent cyanometallates [M(diimine)(CN)4]2− and their supramolecular assemblies, Dalton Trans., 39 (38), 8851–8867.
[9] Ahmad, H., Meijer, A.J.H.M., and Thomas, J.A., 2011, Tuning the excited state of photoactive building blocks for metal‐templated self‐assembly, Chem.-Asian J., 6, 2339–2351.
[10] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, M.P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., 2010, Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT.
[11] Li, G.N., Zeng, Y.P., Li, K.X., Chen, H.H., Xie, H., Zhang, F.L. Chen, G.Y., and Niu, Z.G., 2016, Synthesis, characterization, properties and DFT calculations of 2-(benzo[b]thiophen-2-yl)pyridine-based iridium(III) complexes with different ancillary ligands, J. Fluoresc., 26 (1), 323–331.
[12] Shang, X., Han, D., Zhan, Q., Zhang, G., and Li, D., 2014, DFT and TD-DFT study on the electronic structures and phosphorescent properties of a series of heteroleptic iridium(III) complexes, Organometallics, 33 (13), 3300–3308.
[13] Wragg, A.B., Derossi, S., Easun, T.L., George, M.W., Sun, X.Z., Hartl, F., Shelton, A.H., Meijer, A.J.H.M., and Ward, M.D., 2012, Solvent-dependent modulation of metal-metal electronic interactions in a dinuclear cyanoruthenate complex: A detailed electrochemical, spectroscopic and computational study, Dalton Trans., 41 (34), 10354–10371.
[14] Grange, C.S., Meijer, A.J.H.M., and Ward, M.D., 2010, Trinuclear ruthenium dioxolene complexes based on the bridging ligand hexahydroxytriphenylene: Electrochemistry, spectroscopy, and near-infrared electrochromic behaviour associated with a reversible seven-membered redox chain, Dalton Trans., 39, 200–211.
[15] Demoin, D.W., Li, Y., Jurisson, S.S., and Deakyne, C.A., 2012, Method and basis set analysis of oxorhenium(V) complexes for theoretical calculations, Comput. Theor. Chem., 997, 34–41.
[16] Li, L., Hu, J., Shi, X., Ruan, W., Luo, J., and Wei, X., 2016, Theoretical studies on structures, properties and dominant debromination pathways for selected polybrominated diphenyl ethers, Int. J. Mol. Sci., 17 (6), 927.
[17] Latouche, C., Skouteris, D., Palazzetti, F., and Barone, V., 2015, TD-DFT Benchmark on inorganic Pt(II) and Ir(III) complexes, J. Chem. Theory Comput., 11 (7), 3281–3289.
[18] Zhang, X., Jacquemin, D., Peng, Q., Shuai, Z., and Escudero, D., 2018, General approach to compute phosphorescent OLED efficiency, J. Phys. Chem. C, 122 (11), 6340–6347.
[19] Foxon, S.P., Green, C., Walker, M., Wragg, A., Adams, H., Weinstein, J.A., Parker, S.C., Meijer, A.J.H.M., and Thomas, J.A., 2012, Synthesis, characterization, and DNA binding properties of ruthenium(II) complexes containing the redox active ligand benzo[i]dipyrido[3,2-a:2',3'-c]phenazine-11,16-quinone, Inorg. Chem., 51 (1), 463–471.
[20] Elliott, P.I.P., Haak, S., Meijer, A.J.H.M., Sunley, G.J., and Haynes, A., 2013, Reactivity of Ir(III) carbonyl complexes with water: Alternative by-product formation pathways in catalytic methanol carbonylation, Dalton Trans., 42 (47), 16538–16546.
[21] Sahin, C., Goren, A., Demir, S., and Cavus, M.S., 2018, New amide based iridium(III) complexes: Synthesis, characterization, photoluminescence and DFT/TD-DFT studies, New J. Chem., 42 (4), 2979–2988.
[22] Brahim, H., Haddad, B., Brahim, S., and Guendouzi, A., 2017, DFT/TDDFT computational study of the structural, electronic and optical properties of rhodium (III) and iridium (III) complexes based on tris-picolinate bidentate ligands, J. Mol. Model., 23 (12), 344.
[23] Megyes, T., Schubert, G., Kovács, M., Radnai, T., Grósz, T., Bakó, I., Pápai, I., and Horváth, A., 2003, Structure and properties of the [Ru(bpy)(CN)4]2– complex and its solvent environment: X-ray diffraction and density functional study, J. Phys. Chem. A, 107 (46), 9903–9909.
[24] Laury, M.L., Carlson, M.J., and Wilson, A.K., 2012, Vibrational frequency scale factors for density functional theory and the polarization consistent basis sets, J. Comput. Chem., 33 (30), 2380–2387.
[25] De La Pierre, M., and Pouchan, C., 2018, Ab initio periodic modelling of the vibrational spectra of molecular crystals: The case of uracil, Theor. Chem. Acc., 137 (2), 25.
[26] Desiraju, G.R., and Steiner, T., 2001, The Weak Hydrogen Bond in Structural Chemistry and Biology, International Union of Crystallography, Monographs on Crystallography, Oxford Science Publications, New York, USA.
[27] Smith, B.C., 2011, Fundamentals of Fourier Transform Infrared Spectroscopy, 2nd Ed., CRC Press, Boca Raton, USA.
[28] Nemec, I., Herchel, R., Šilha, T., and Trávníček, Z., 2014, Towards a better understanding of magnetic exchange mediated by hydrogen bonds in Mn(III)/Fe(III) salen-type supramolecular dimers, Dalton Trans., 43 (41), 15602–15616.
[29] Pal, A.K., Nag, S., Ferreira, J.G., Brochery, V., La Ganga, G., Santoro, A., Serroni, S., Campagna, S., and Hanan, G.S., 2014, Red-emitting [Ru(bpy)2(N-N)]2+ photosensitizers: Emission from a ruthenium(II) to 2,2′-bipyridine 3MLCT state in the presence of neutral ancillary “super donor” ligands, Inorg. Chem., 53 (3), 1679–1689.
[30] Pal, A.K., Cordes, D.B., Pringouri, K., Anwar, M.U., Slawin, A.M.Z., Rawson, J.M., and Zysman-Colman, E., 2016, Synthesis and characterization of green-to-yellow emissive Ir(III) complexes of pyridylbenzothiadiazine ligand, J. Coord. Chem., 69 (11-13), 1924–1937.
DOI: https://doi.org/10.22146/ijc.62763
Article Metrics
Abstract views : 2154 | views : 1489 | views : 419Copyright (c) 2021 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.