Rotational Barrier and Conjugation: Theoretical Study of Resonance Stabilization of Various Substituents for the Donors NH2 and OCH3 in Substituted 1,3-Butadienes
Ali Hussain Yateem(1*)
(1) Department of Chemistry, College of Science, University of Bahrain, P.O. Box 32038, Sakheer, Kingdom of Bahrain
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Lipnick, R.L., and Garbisch, E.W., 1973, Conformational analysis of 1,3-butadiene, J. Am. Chem. Soc., 95 (19), 6370–6375.
[2] Squillacote, M.E., Sheridan, R.S., Chapman, O.L., and Anet, F.A.L., 1979, Planar s-cis-1,3-butadiene, J. Am. Chem. Soc., 101 (13), 3657–3659.
[3] Haugen, W., and Traetteberg, M., 1966, The molecular Structure of 1,3-butadiene and 1,3,5-trans-hexatriene, Acta Chem. Scand., 20, 1726–1728.
[4] Feller, D., and Craig, N.C., 2009, High-level ab initio energies and structures for the rotamers of 1,3-butadiene, J. Phys. Chem. A, 113 (8), 1601–1607.
[5] Guo, H., and Karplus, M., 1991, Ab initio studies of polyenes. 1. 1,3-butadiene, J. Chem. Phys., 94 (5), 3679–3699.
[6] Karpfen, A., and Parasuk, V., 2004, Accurate torsional potentials in conjugated systems: Ab initio and density functional calculations on 1,3-butadiene and monohalogenated butadienes, Mol. Phys., 102 (8), 819–826.
[7] De Mare, G.R., and Neisius, D., 1984, Ab initio study of rotational isomerism in 1,3-butadiene. Effect 21 of geometry optimization and basis set size on the barriers to the rotation and on the stable rotamers, J. Mol. Struct. THEOCHEM, 109 (1-2), 103–126.
[8] Craig, N.C., Demaison, J., Groner, P., Rudolph, H.D., and Vogt, N., 2015, Electron delocalization in polyenes: A semiexperimental equilibrium structure for (3E)-1,3,5-Hexatriene and theoretical structures for (3Z,5Z)-, (3E,5E)-, and (3E,5Z)-1,3,5,7-Octatetraene, J. Phys. Chem. A, 119 (1), 195–204.
[9] Mannfors, B., Koskinen, J.T., Pietilä, L.-O., and Ahjopalo, L., 1997, Density functional studies of conformational properties of conjugated systems containing heteroatoms, J. Mol. Struct. THEOCHEM, 393 (1-3), 39–58.
[10] Xi, H.W., Karni, M., and Apeloig, Y., 2008, Silabutadienes. Internal rotations and π-conjugation. A density functional theory study, J. Phys. Chem. A, 112 (50), 13066–13079.
[11] Xi, H.W., and Lim, K.H., 2008, Theoretical study of germabutadienic internal rotations and π-conjugation, Organometallics, 27 (22), 5748–5758.
[12] Haloui, A., and Arfaoui, Y., 2010, A DFT study of the conformational behavior of para-substituted acetophenones in vacuum and in various solvents, J. Mol. Struct. THEOCHEM, 950 (1-3), 13–19.
[13] Chieh, Y.C., Chen, P.C., and Chen, S.C., 2003, Theoretical study of the internal rotational barriers in some N-substituted nitropyrroles, J. Mol. Struct. THEOCHEM, 636 (1-3), 115–123.
[14] Radom, L., Hehre, W.J., Pople, J.A., Carlson, G.L., and Fateley, W.G., 1972, Torsional barriers in para-substituted phenols from ab initio molecular orbital theory and far infrared spectroscopy, J. Chem. Soc., Chem. Commun., 0 (6), 308–309.
[15] Chen, P.C., and Chieh, Y.C., 2002, Density functional theory study of the internal rotational barriers of some aromatic nitro compounds, J. Mol. Struct. THEOCHEM, 583 (1-3), 173–180.
[16] Tsuzuki, S., Houjou, H., Nagawa, Y., and Hiratani, K., 2000, High-level ab initio calculations of torsional potential of phenol, anisole, and o-hydroxyanisole: Effects of intramolecular hydrogen bond, J. Phys. Chem. A, 104 (6), 1332–1336.
[17] Varkey, E.C., Hutter, J., Limacher, P.A., and Lüthi, H.P., 2013, Impact of donor-acceptor functionalization on the properties of linearly π-conjugated oligomers: Establishing quantitative relationships for the substituent and substituent cooperative effect based on quantum chemical calculations, J. Org. Chem., 78 (24), 12681–12689.
[18] Ehrenson, S., Brownlee, R.T.C., and Taft, R.W., 1973, “A Generalized Treatment of Substituent Effects in the Benzene Series. A Statistical Analysis by the Dual Substituent Parameter Equation (1)” in Progress in Physical Organic Chemistry, eds., Streitwiesr, A., and Taft, R.W., John Wiley & Sons, Inc., 1–80.
[19] Hansch, C., Leo, A., and Taft, R.W., 1991, A survey of Hammett substituent constants and resonance and field parameters, Chem. Rev., 91 (2), 165–195.
[20] Exner, O., and Böhm, S., 2006, Conjugation of two functional groups through an unsaturated system, J. Phys. Org. Chem., 19 (1), 1–9.
[21] Böhm, S., and Exner, O., 2005, Quantitative evaluation of resonance interaction: Monosubstituted 1,3-butadienes, J. Mol. Struct. THEOCHEM, 722 (1-3), 125–131.
[22] Exner, O., and Böhm, S., 2004, Enthalpies of formation of monoderivatives of hydrocarbons: Interaction of polar groups with an alkyl group, J. Comput. Chem., 25 (16), 1979–1986.
[23] Pross, A., Radom, L., and Taft, R.W., 1980, Theoretical approach to substituent effects. Phenols and phenoxide ions, J. Org. Chem., 45 (5), 818–826.
[24] Chai, J.D., and Head-Gordon, M., 2008, Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections, Phys. Chem. Chem. Phys., 10 (44), 6615–6620.
[25] Guo, H., and Karplus, M., 1992, Ab initio studies of methylated 1,3-butadienes, J. Mol. Struct. THEOCHEM, 260, 347–393.
[26] Wavefunction, Inc., Irvine, CA 92612, U.S.A.
[27] Gross, K.C., and Seybold, P.G., 2000, Substituent effects on the physical properties and pKa of aniline, Int. J. Quantum Chem., 80 (4-5), 1107–1115.
[28] Gross, K.C., and Seybold, P.G., 2001, Comparison of quantum chemical parameters and Hammett constants in correlating pKa values of substituted anilines, J. Org. Chem., 66 (21), 6919–6925.
[29] Ghafourian, T., and Dearden, J.C., 2004, The use of molecular electrostatic potentials as hydrogen-bonding-donor parameters for QSAR studies, Il Farmaco, 59 (6), 473–479.
[30] Riley, K.E., Tran, K.A., Lane, P., Murray, J.S., and Politzer, P., 2016, Comparative analysis of electrostatic potential maxima and minima on molecular surfaces, as determined by three methods and a variety of basis sets, J. Comput. Sci., 17 (1), 273–284.
[31] Sudlow, K.P., and Woolf, A.A., 1998, What is the geometry at trigonal nitrogen?, J. Chem. Educ., 75 (1), 108–110.
[32] Krygowski, T.M., and Steüpien, B.T., 2005, Sigma- and pi-electron delocalization: Focus on substituent effects, Chem. Rev., 105 (10), 3482–3512.
[33] Böhm, S., and Exner, O., 2007, Dipole moments and electron distribution of conjugated molecules; Para derivatives of benzene, J. Mol. Struct. THEOCHEM, 803 (1-3), 9–16.
DOI: https://doi.org/10.22146/ijc.42850
Article Metrics
Abstract views : 2535 | views : 2530Copyright (c) 2019 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.