Removal of Heavy Metals from Leachate Using Electro-Assisted Phytoremediation (EAPR) and Up-Take by Water Hyacinth (Eichornia crassipes)
Rudy Syah Putra(1*), Febby Yulia Hastika(2)
(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Jl. Kaliurang Km. 14, Yogyakarta 55584, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Jl. Kaliurang Km. 14, Yogyakarta 55584, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] El-Fadel, M., Bou-Zeid, E., Chahine, W., and Alayli, B., 2002, Temporal variation of leachate quality from pre-sorted and baled municipal solid waste with high organic and moisture content, Waste Manage., 22 (3), 269–282.
[2] Christensen, T.H., 1992. “Attenuation of Leachate Pollutants in Groundwater” in Landfilling of Waste: Leachate, Christensen, T.H., Cossu, R., and Stegmann, R., Eds., Elsevier, Barking, UK, 441–483.
[3] Environment Agency, 2003, Guidance on Monitoring of Landfill Leachate, Groundwater and Surface Water, London, UK.
[4] Monje-Ramirez, I., and Orta de Velásquez, M.T., 2004, Removal and transformation of recalcitrant organic matter from stabilized saline landfill leachates by coagulation–ozonation coupling processes, Water Res., 38 (9), 2358–2367.
[5] Zouboulis, A.I., Chai, X.L., and Katsoyiannis, I.A., 2004, The application of bioflocculant for the removal of humic acids from stabilized landfill leachates, J. Environ. Manage., 70 (1), 35–41.
[6] Kamenev, I., Pikkov, L., and Kallas, J., 2002, Aerobic bio-oxidation combined with ozonation in the treatment of landfill leachates, Proc. Est. Acad. Sci. Chem., 51(3), 148–155.
[7] Karrer, N.J., Ryhiner, G., and Heinzle, E., 1997, Applicability test for combined biological-chemical treatment of wastewaters containing biorefractory compounds, Water Res., 31 (5), 1013–1020.
[8] Renou, S., Givaudan, J.G., Poulain, S., Dirassouyan, F., and Moulin, P., 2008, Landfill leachate treatment: Review and opportunity, J. Hazard. Mater., 150 (3), 468–493.
[9] Raskin, I., and Ensley, B.D., 2000, Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment, John Wiley & Sons, Inc., New York, 304.
[10] Hodko, D., Hyfte, J.V., Denvir, A., and Magnuson, J.W., 2000, Methods for enchancing phytoextraction of contaminants from porous media using electrokinetic phenomena, US Patent, 6,145,244.
[11] O’connor, C.S., Lepp, N.W., Edwards, R., and Sunderland, G., 2003, The combined use of electrokinetic remediation and phytoremediation to deconteminate metal polluted soils: A laboratory scale feasibility study, Environ. Monit. Assess., 84 (1-2), 141–158.
[12] Putra, R.S., Ohkawa, Y., and Tanaka, S., 2013, Application of EAPR system on the removal of lead from sandy soil and uptake by Kentucky bluegrass (Poa pratensis L.), Sep. Purif. Technol., 102, 34–42.
[13] Bi, R., Schlaak, M., Siefert, E., Lord, R., and Connolly, H., 2010, Alternating current electric field effects on lecttuce (Lactuta sativa) growing in hydroponic culture with and without cadmium contamination, J. Appl. Electrochem., 40 (6), 1217–1223.
[14] Putra, R.S., Cahyana, F., and Novarita, D., 2015, Removal of lead and copper from contaminated water using EAPR system and uptake by water lettuce (Pistia stratiotes L), Procedia Chem., 14, 381–386.
[15] Putra, R.S., Trahadinata, G.A., Latif, A., and Solehudin, M., 2017, Wastewater treatment of chemical laboratory using electro assisted-phytoremediation (EAPR), AIP Conf. Proc., 1823 (1), 020077.
[16] Moran, R., and Poranth, D., 1980, Chlorophyll determination in intact tissue using N,N dimethylforamide, Plant Physiol., 65 (3), 478–479.
[17] Chakroun, H.K., Souissi, F., Bouchardon, J.L., Souissi, R., Moutte, J., Faure, O., Remon, E., and Abdeljaoued, S., 2010, Transfer and accumulation of lead, zinc, cadmium and copper in plants growing in abandoned mining-district are, Afr. J. Environ. Sci. Technol., 4 (10), 651–659.
[18] Dushenkov, V., Kumar, P.B., Motto, H., and Raskin, I., 1995, Rhizofiltration: The use of plants to remove heavy metals from aqueous streams, Environ. Sci. Technol., 29 (5), 1239–1245.
[19] Li, R., Guo, P., Baum, M., Grando, S., and Ceccarelli, S., 2006. Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley, Agric. Sci. China, 5 (10), 751–757.
[20] Huang, J.W., Chen, J., Berti, W.R., and Cunningham S.D., 1997, Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction, Environ. Sci. Technol., 31 (3), 800–805.
[21] Chantachon, S., Kruatrachue, M., Pokethitiyook, P., Upatham, S., Tantanasarit, S., and Soothornsarathool, V., 2004, Phytoextraction and accumulation of lead from contaminated soil by vetiver grass: laboratory and simulated field study, Water Ai, Soil Pollut., 154 (1-4), 37–55.
[22] Putra, R.S., Novarita, D., and Cahyana, F., 2016, Remediation of lead (Pb) and copper (Cu) using water hyacinth [Eichornia crassipes (Mart.) Solms] with electro˗assisted phytoremediation (EAPR), AIP Conf. Proc., 1744, 020052.
[23] Saiyood, A., Vangnai, A.S., Inthorn, D., and Thiravetyan, P., 2012, Treatment of total dissolved solids from plastic industrial effluent by halophytic plants, Water Air Soil Pollut., 223 (8), 4865–4873.
[24] King, D.L., 1970, The role of carbon in eutrophication, J. Water Pollut. Control Fed., 42 (12), 2035–2051.
[25] Huang, Y.R., Hung, Y.C., Hsu, S.Y., Huang, Y.W., and Hwang, D.F., 2008, Application of electrolyzed water in the food industry, Food Control., 19 (4), 329–345.
DOI: https://doi.org/10.22146/ijc.29713
Article Metrics
Abstract views : 3811 | views : 3507Copyright (c) 2018 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.