Functionalization of Cellulose through Polyurethanization by the Addition of Polyethylene Glycol and Diisocyanate
Imam Prabowo(1*), Ghiska Ramahdita(2), Mochamad Chalid(3)
(1) Department Metallurgy and Material Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI, Depok 16436, Indonesia
(2) Department Metallurgy and Material Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI, Depok 16436, Indonesia
(3) Department Metallurgy and Material Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI, Depok 16436, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Mohanty, A.K., Misra, M., Drzal, L.T., Selke, S.E., Harte, B.R., and Hinrichsen, G., 2005, Natural Fibers, Biopolymers, and Biocomposites: An Introduction, CRC Press, Boca Raton, Florida, 1–36.
[2] Randall, D., and Lee, S., (Eds.), 2003, The Polyurethanes Book, 1st ed., John Wiley & Sons, UK, 1–8.
[3] Chalid, M., 2012, Levulinic Acidas a Renewable Source for Novel Polymers, Rijksuniversiteit Groningen Press, Groningen, 2–10.
[4] Saralegi, A., Gonzalez, M.L,. Valea, A., Eceiza, A., and Corcuera, M.A., 2004, The role of celulose nanocrystals in the improvement of the shape-memory properties of castor oil-based segmented thermoplastic polyurethanes, Compos. Sci. Technol., 92, 27–33.
[5] El-Shekeil, Y.A., Sapuan, S.M., Abdan, K., Zainudin, E.S., and Al-Shuja’a, O.M., 2012, Effect of PMDI isocyanate additive mechanical and thermal properties of Kenaf fibre reinforced thermoplastic polyurethanes composite, Bull. Mater. Sci., 35 (7), 1151–1155.
[6] Petrović, Z.S., and Ferguson, J, 1991, Polyurethane elastomers, Prog. Polym. Sci., 16 (5), 695–836.
[7] Firdaus, D.F., Masrudin, Lestari, D.A., Arbi, M.R., and Chalid, M., 2015, Structure and compatibility study of modified polyurethane/Fe3O4 nanocomposite for shape memory materials, Indones. J. Chem., 15 (2), 130–140.
[8] Paquet, O., Krouit, M., Bras, J., Thielemans, W., and Belgacem, M.N., 2010, Surface modification of cellulose by PCL grafts, Acta Mater., 58 (3), 792–801.
[9] Faruk, O., Bledzki, A.K., Fink, H.P., and Sain, M., 2012, Biocomposites reinforced with natural fibers, Prog. Polym. Sci., 37 (11), 1552–1596.
[10] Thiruchitrambalam, M., Athijayamani, A., Sathiyamurthy, S., and Thaheer, A.S.B., 2010, A review on the natural fiber-reinforced polymer composites for the development of roselle fiber-reinforced polyester composite, J. Nat. Fibers, 7 (4), 307–323.
[11] Madsen, B., 2004, Properties of Plant Fibre Yarn Polymer Composites: An Experiment Study, Dissertation, Department of Civil Engineering, Technical University of Denmark, Denmark.
[12] Samir, M.A.S.A., Alloin, F., and Dufresne, A., 2005, Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field, Biomacromolecules, 6 (2), 612–626.
[13] Heinze, T., and Petzold, K., 2008, “Cellulose Chemistry: Novel Products and Synthesis Paths” in Monomers, Polymers and Composites from Renewable Resources, Belgacem, M.N., and Gandini, A., Eds., Elsevier Science, 343–368.
[14] Chalid, M., and Prabowo, I., 2015, The effects of alkalization to the mechanical properties of ijuk fibers reinforced PLA biocomposites, Int. J. Chem. Mol. Nucl. Mater. Metal. Eng., 9 (2), 342–346.
[15] Yuanita, E., Pratama, J.N., Mustafa, J.H., and Chalid, M., 2015, Multistages preparation of microfibrillated cellulose based on Arenga pinnata “ijuk” fiber, Procedia Chem., 16, 608–615.
[16] Chalid, M., Yuanita, E., and Pratama, J.N., 2015, Study of alkalization to the crystallinity and the thermal behavior of Arenga pinnata “ijuk” fibers-based polylactic acid, Mater. Sci. Forum, 827, 326–331.
[17] Ramahdita, G., Ilmiati, S., Suryanegara, L., Khalid, A., and Chalid, M., 2017, Preparation and characterization for sorgum-based micro-fibrillated celluloses, Macromol. Symp., 371 (1), 69–74.
[18] Samain, X., Langlois, V., Renard, E., and Lorang, G., 2011, Grafting biodegradable polyesters onto cellulose, J. Appl. Polym. Sci., 121 (2), 1183–1192.
[19] David, D.J., and Staley, H.B., 1969, Analytical Chemistry for Polyurethanes, vol. 16, Wiley Interscience, New York, 365-478.
[20] Pretsch, E., Bühlmann, P., and Badertscher, M, 2009, Structure Determination of Organic Compounds Tables of Spectral Data, Springer-Verlag, Berlin Heidelberg, Berlin, 10–17.
[21] Siqueira, G., Bras, J., and Dufresne, A., 2010, New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate, Langmuir, 26 (1), 402–411.
[22] Pu, Y., Zhang, D., Singh, P.M., and Ragauskas, A.J., 2008, The new forestry biofuels sector, Biofuels Bioprod. Biorefin., 2 (1), 58–73.
[23] Zhang, C., Hu., J., and Wu, Y., 2014, Theoretical studies on hydrogen-bonding interactions in hard segments of shape memory polyurethane-III: Isophorone diisocyanate, J. Mol. Struct., 1072, 13–19.
[24] Sanches, A.O., Ricco, L.H.S., Malmonge, L.F., Michael, da Silva, M.J., Sakamoto, W.K., and Malmonge, J.A., 2014, Influence of cellulose nanofibrils on soft and hard segments of polyurethane/cellulose nanocomposites and effect of humidity on their mechanical properties. Polym. Test., 40, 99–105.
[25] George, J., Bhagawan, S.S., and Thomas, S., 1997, Effects of environment on the properties of low-density polyethylene composites reinforced with pineapple leaf fibre, Compos. Sci. Technol., 58 (9), 1471–1485.
DOI: https://doi.org/10.22146/ijc.28550
Article Metrics
Abstract views : 2683 | views : 2065Copyright (c) 2018 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.