Ab Initio Study of Proton Transfer and Hydration in Phosphorylated Nata de Coco

https://doi.org/10.22146/ijc.24895

Sitti Rahmawati(1), Cynthia Linaya Radiman(2), Muhamad Abdulkadir Martoprawiro(3*)

(1) Chemistry Study Program, Mathematics and Sciences Division, Faculty of Teacher Training and Educational Sciences, Tadulako University, Jl. Soekarno Hatta Km 9 Palu 94118 Indonesia
(2) Inorganic and Physical Chemistry Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10 Bandung 40132 Indonesia
(3) Inorganic and Physical Chemistry Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10 Bandung 40132 Indonesia
(*) Corresponding Author

Abstract


This research aims to calculate energetics parameters, hydrogen bonding, characteristics local hydration, and proton transfer in phosphorylated nata de coco (NDCF) membrane using ab initio method. The minimum energy structure of NDCF membranes and the addition of n water molecules (n = 1-10) determined at the B3LYP/6-311G** level indicates that proton dissociation requires a minimum of four water molecules. Dissociated protons stabilize with the formation of (hydronium, Zundel, Eigen) ions. Calculation of the interaction energy with n water molecules indicates an increasingly negative change in energy (ΔE) and enthalpy (ΔH), and hence an increasingly positive interaction with water molecules. This interaction facilitates the transfer of protons in the membrane matrix. Calculation of the rotational energy at the center of C-O indicates that the pyranose ring structure, with a maximum barrier energies of ~ 12.5 J/mol, is much more flexible than the aromatic backbones of sulfonated poly(phenylene) sulfone (sPSO2) and the polytetrafluoroethylene (PTFE) backbones in perfluorosulfonic acid ionomers (PFSA). These energy calculations provide the basis that the flexibility of the pyranose ring and the hydrogen bonding between water molecules and phosphonate groups influence the transfer of protons in the membrane of NDCF.

Keywords


proton transfer; ab initio; nata de coco

Full Text:

Full Text PDF


References

[1] Schuster, M., de Araujo, C.C., Atanasov, V., Andersen, H.T., Kreuer, K-D., and Joachim Maier, J., 2009, Highly sulfonated poly(phenylene sulfone): Preparation and stability issues, Macromolecules, 42 (8), 3129–3137.

[2] Maiyalagan, T., and Pasupathi, S., 2010, Components for PEM fuel cells: An overview, Mater. Sci. Forum, 657, 143–189.

[3] Zaidi, S.M.J., and Matsuura, T., 2009, Polymer Membranes for Fuel Cells, Springer, New York.

[4] Wang, Y., Chen, K.S., Mishler, J., Cho, S.C., and Adroher, X.C., 2011, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. Energy, 88 (4), 981–1007.

[5] Smitha, B., Sridhar, S., and Khan, A.A., 2005, Solid polymer electrolyte membranes for fuel cell applications—A review, J. Membr. Sci., 259 (1-2), 10–26.

[6] Mecheri, B., D’Epifanio, A., Traversa, E., and Licoccia, S., 2008, Sulfonated polyether ether ketone and hydrated tin oxide proton conducting composites for direct methanol fuel cell applications, J. Power Sources, 178 (2), 554–560.

[7] Song, A.K., Batista, C., Sarpeshkar, R., and Han, J., 2008, Rapid fabrication of microfluidic polymer electrolyte membrane fuel cell in PDMS by surface patterning of perfluorinated ion-exchange resin, J. Power Sources, 183 (2), 674–677.

[8] Spry, D.B., and Fayer, M.D., 2009, Proton transfer and proton concentrations in protonated Nafion fuel cell membranes, J. Phys. Chem. B, 113 (30), 10210–10221.

[9] Bae, B., Miyatake, K., and Watanabe, M., 2008, Sulfonated poly(arylene ether sulfone) ionomers containing fluorenyl groups for fuel cell applications, J. Membr. Sci., 310 (1-2), 110–118.

[10] Wilkinson, D.P., Zhang, J., Hui, R., Fergus, J., and Li, X., 2010, Proton Exchange Membrane Fuel Cell Material Properties and Performance, CRC Press, New York.

[11] Neburchilov, V., Martin, J., Wang, H., and Zhang, J., 2007, A review of polymer electrolyte membranes for direct methanol fuel cells, J. Power Sources, 169 (2), 221–238.

[12] Liu, Q., Song, L., Zhang, Z., and Liu, X., 2010, Preparation and characterization of the PVDF-based composite membrane for direct methanol fuel cells, Int. J. Energy Environ., 1 (4), 643–656.

[13] Radiman, C.L., and Rifathin, A., 2013, Preparation of phosphorylated nata-de-coco for polymer electrolyte membrane applications, J. Appl. Polym. Sci., 130 (1), 399–405.

[14] Cui, S., Liu, J., Selvan, M.E., Paddison, S.J., Keffer, D.J., and Brian J. Edwards, B.J., 2008, Comparison of the hydration and diffusion of protons in perfluorosulfonic acid membranes with molecular dynamics simulations, J. Phys. Chem. B, 112 (42), 13273–13284.

[15] Habenicht, B.F., Paddison, S.J., and Tuckerman, M.E., 2010, The effects of the hydrophobic environment on proton mobility in perfluorosulfonic acid systems: An ab initio molecular dynamics study, J. Mater. Chem., 20 (30), 6342–6351.

[16] Wang, C., and Paddison, S.J., 2013, Hydration and proton transfer in highly sulfonated poly(phenylene sulfone) ionomers: An ab initio study, J. Phys. Chem. A, 117 (3), 650−660.

[17] Vilciauskas, L., Paddison, S.J., and Kreuer, K-D., 2009, Ab initio modeling of proton transfer in phosphoric acid clusters, J. Phys. Chem. A, 113 (32), 9193–9201.

[18] Wijaya, K., Tahir, I., and Harnowo, 2003, Study of double protons migration mechanism in supramolecular structures of acetic acid-water and acetic acid-ammonia by ab initio method, Indones. J. Chem., 3 (2), 102-110.

[19] Rahmawati, S., Radiman, C.L., and Martoprawiro, M.A., 2016, Ab initio study of phosphorylated nata de coco membrane structure, Prosiding Seminar Nasional Sains dan Pendidikan Sains, ISBN: 978-602-74182-0-2, 54–57.

[20] Rahmawati, S., Radiman, C.L., and Martoprawiro, M.A., 2016, Ab initio calculation of hydration and proton transfer on sulfonated nata de coco, Eur. J. Chem., 7 (4), 442–447.

[21] Paddison, S.J., 2005, Molecular modeling of the short-side-chain perfluorosulfonic acid membrane, J. Phys. Chem. A, 109 (33), 7583–7593.

[22] Paddison, S.J., and Elliott, J.A., 2006, On the consequences of side chain flexibility and backbone conformation on hydration and proton dissociation in perfluorosulfonic acid membranes, Phys. Chem. Chem. Phys., 8, 2193–2203.

[23] Paddison, S.J., 2003. Proton conduction mechanisms at low degrees of hydration in sulfonic acid-based polymer electrolyte membranes, Annu. Rev. Matter. Res., 33, 289–319.



DOI: https://doi.org/10.22146/ijc.24895

Article Metrics

Abstract views : 3502 | views : 2615


Copyright (c) 2017 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.