PREPARATION AND CHARACTERIZATION OF POROUS ALUMINA-TITANIA AEROGEL VIA CO2 SUPERCRITICAL EXTRACTION
Silvester Tursiloadi(1*), Hiroaki Imai(2), Hiroshi Hirashima(3)
(1) Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan PUSPIPTEK, Serpong, Tangerang 15314
(2) Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-Ku, Yokohama 223-8522
(3) Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-Ku, Yokohama 223-8522
(*) Corresponding Author
Abstract
Porous aerogel of titania-alumina were prepared by hydrolysis of metal alkoxides and supercritical extraction of the solvent. Monolithic wet-gel of 0.2TiO2-0.8Al2O3, prepared by hydrolysis of metal alkoxides in alcoholic solutions, and the solvent in wet gel was supercritically extracted in CO2 at 60oC and 24Mpa for 2h. Thermal evolutions of the microstructure of the gel were evaluated by differential thermal analysis (TG-DTA), N2 adsorption, scanning electron microscopy and X-ray diffractometer. After calcination at 500oC, the specific surface area of the gel was more than 400m2g-1. The average pore radius of aerogel, about 8nm, was about 50% of that for alumina aerogel, but about 4 times larger than that of the xerogel. The specific surface area of the aerogel was more than 200m2g-1 after calcination at 800oC. The pore size and pore volume of aerogel hardly decreased after calcinations at 800oC, although those values of the xerogel remarkably decreased after calcination up to 800oC. The thermal stability of the microstructure of porous titania-alumina is improved by supercritical extraction.
Keywords
Full Text:
Full Text PdfReferences
[1] Ramirez, J., Ruiz-Ramirez, L. Cedeno, L., Harle, V., Vrinat M. and Breysse, M. 1993, Appl. Catal. A, 93, 163.
[2] Nakabayashi, H. 1992, Bull. Chem. Soc. Jpn., 65, 914.
[3] Hirashima, H., Imai, H., and Balek, V., 2001, J. Non-Crystalline Solids, 285, 96.
[4] Yusuf, M., Imai, H., and Hirashima, H., 2001, J. Non-Crystalline Solids, 285, 96.
[5] Wohlfromm, H., Pena, P., Moya J.S., and Requena, J., 1992, J. Am. Ceram. Soc., 75, 3473.
[6] Das, B.N., 1992, J. Mater. Sci. Lett., 11, 843.
[7] Fricke, J., 1986, Aerogels, Proc. 1st Int. Symp., Springer, Berlin.
[8] Gesser, H.D., and Goswanmi, P.C., 1989, Chem. Rev., 89, 765.
[9] Ayen, R.J., and Lacobucci, P.A, 1988, Rev. Chem. Eng. 5, 157
[10] Toba, M., Mizukami, F., Niwa, F., Kiyozumi, Y., Maeda, K., Annila A., and Komppa, V., 1994, J. Mater. Chem., 4(4), 585.
[11] Linacero, R., Rojas-Cervantes, M.L., and Lopez-Gonzalez, J.D.D., 2000, J. Mater. Sci. 35, 3279.
[12] Weissman, I.C., Ko, E.I., and Kaytal, S., 1993, Appl. Catal. 94, 45.
[13] Hirashima, H., Kojima, C., Kohama, K., Imai, H., Balek, V., Hamada, H., and Inaba, M., 1998, J. Non-Crystalline Solids, 225, 153.
DOI: https://doi.org/10.22146/ijc.21845
Article Metrics
Abstract views : 1354 | views : 821Copyright (c) 2010 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.