CARBON PASTE ELECTRODE HEXADECYLTRIMETHYLAMMONIUM BROMIDE MODIFIED NATURAL ZEOLITE FOR CHROMIUM(VI) DETECTION

https://doi.org/10.22146/ijc.21294

Budi Riza Putra(1), Latifah K Darusman(2*), Eti Rohaeti(3)

(1) Division of Analytical Chemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Kampus IPB Darmaga, Bogor 16680
(2) Division of Analytical Chemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Kampus IPB Darmaga, Bogor 16680
(3) Division of Analytical Chemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Kampus IPB Darmaga, Bogor 16680
(*) Corresponding Author

Abstract


A simple voltammetric technique for quantification of chromium(VI) is presented in this work. The technique is based on linear sweep voltammetric reduction Cr(VI) on hexadecyltrimethylammonium bromide (HDTMABr) modified Lampung zeolite carbon paste electrode. Selected HDTMABr concentration for natural zeolite modification is obtained 200 mM. Working electrode for chromium(VI) detection is made by graphite, paraffin oil and HDTMABr modified Lampung zeolite. The effect of supporting electrolyte matrix, pH and also scan rate is also investigated. The calibration curve for chromium(VI) detection using the proposed method shows linearity from 0.2 to 1.0 mM with sensitivity, detection and quantification limit, and precision was 0.4294 mM, 3.63 x 10-4 mM, 1.197 x 10-3 mM, 4.49%, respectively.

Keywords


Lampung clinoptilolite zeolite; chromium(VI); HDTMABr modified zeolite carbon paste electrode; linear sweep voltammetry; heavy metal

Full Text:

Full Text PDF


References

[1] Gómez, V., and Callao, M.P., 2006, TrAC, Trends Anal. Chem., 25, 10, 1006–1015.

[2] Švancara, I., Foret, P., and Vytřas, K., 2004, Talanta, 64, 4, 844–852.

[3] Kachoosangi, R.T., and Compton, R.G., 2013, Sens. Actuator, B, 178, 555–562.

[4] Cespón-Romero, R.M., Yebra-Biurrun, M.C., and Bermejo-Barrera, M.P., 1996, Anal. Chim. Acta, 327, 1, 37–45.

[5] Ndung’u, K., Djane, N-K., Malcus, F., and Mathiasson, L., 1999, Analyst, 124, 1367–1372.

[6] Sumida, T., Ikenoue, T., Hamada, K., Sabarudin, A., Oshima, M., and Motomizu, S., 2005, Talanta, 68, 2, 388–393.

[7] Saygi, K.O., Tuzen, M., and Soylak, M., 2008, J. Hazard. Mater., 153, 3, 1009–1014.

[8] Cathum, S., Brown, C.E., and Wong, W., 2002, Anal. Bioanal. Chem., 373, 1-2, 103–110.

[9] Parsons, J.G., Dokken, K., Peralta-Videa, J.R., Romero-Gonzalez, J., and Gardea-Torresdey, J.L., 2007, Appl. Spectrosc., 61, 3, 338–345.

[10] Cleveland, D., Peter, S., Hou, X., Yang, K.X., Zhou, J., and Michel, R.G., 2005, Appl. Spectrosc., 59, 12, 1427–1444.

[11] Xing, S., Xu, H., Shi, G., Chen, J., Zeng, L., and Jin, L., 2009, Electroanalysis, 21, 15, 1678–1684.

[12] Wang, J., Wang, J., Lu, J., Tian, B., MacDonald, D., and Olsen, K., 1999, Analyst, 124, 349–352.

[13] Burke, L.D., and Nugent, P.F., 1997, Electrochim. Acta, 42, 3, 399–411.

[14] Welch, C.M., Nekrassova, O., and Compton, R.G., 2005, Talanta, 65, 1, 74–80.

[15] Nezamzadeh-Ejhieh, A., and Raja, G., 2013, J. Chem., 2013, 1–13, DOI: 10.1155/2013/68290.

[16] Li, Z., and Bowman, R.S., 1997, Environ. Sci. Technol., 31, 8, 2407–2412.

[17] Xu, S., and Boyd, S.A., 1995, Langmuir, 11, 7, 2508–2514.

[18] Haggerty, G.H., and Bowman, R.S., 1994, Environ. Sci. Technol., 28, 3, 452–458.

[19] Švancara, I., Vytřas, K., Kalcher, K., Walcarius, A., and Wang, J., 2009, Electroanalysis, 21, 1, 7–28.

[20] Wang, J., and Walcarius, A., 1996, J. Electroanal. Chem., 407, 1-2, 183–187.

[21] Walcarius, A., Mariaulle, P., and Lamberts, L., 2003, J. Solid State Electrochem., 7, 671–677.

[22] Nezamzadeh-Ejhieh, A., and Masoudipour, N., 2010, Anal. Chim. Acta, 658, 68–74.

[23] Walcarius, A., 1998, Electroanalysis, 8, 11, 971–986.

[24] Klute, A., 1986. Method of Soil Analysis Part 1: Physical and Mineralogical Methods, 2nd ed., US of Agronomy of Soil Science Society of America, Wisconsin.

[25] Nezamzadeh-Ejhieh, A., and Esmaeilian, A., 2012, Microporous Mesoporous Mater., 147, 302–309.

[26] Wibowo, W., Utari, T., and Yuniarti, R.T., 2011, Makara, 15, 1, 53–57.

[27] Inglezakis, V.J., Papadeas, C.D., Loizidou, M.D., and Grigoropoulou, H.P., 2001, Environ. Technol., 22, 1, 75–82.

[28] Ackley, M.W., Rege, S.U., and Saxena, H., 2003, Microporous Mesoporous Mater., 61, 25–45.

[29] Ates, A., and Hardacre, C., 2012, J. Colloid Interface Sci., 372, 1, 130–140.

[30] Jozefaciuk, G., and Bowanko, G., 2002, Clays Clay Miner., 50, 6, 771–783.

[31] Bonenfant, D., Kharoune, M., Niquette, P., Mimeault, M., and Hausler, R., 2008, Sci. Technol. Adv. Mater., 9, 1–7.

[32] Wibowo, W., Utari, T., and Yunarti, R.T., 2011, Makara, 15, 1, 53–57.

[33] Sprynskyy, M., Ligor, T., Lebedynets, M., and Buszewski, B., 2009, J. Hazard. Mater., 169, 1-3, 847–854.

[34] Kabay, N., Arda, M., Saha, B., and Streat, M., 2003, React. Funct. Polym., 54, 1-3, 103–115.



DOI: https://doi.org/10.22146/ijc.21294

Article Metrics

Abstract views : 2348 | views : 1942


Copyright (c) 2013 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.