Influence of Operational Parameters on the Photocatalytic Activity of Powdered TiO2 for the Reduction of CO2

https://doi.org/10.22146/ijc.21248

Oman Zuas(1*), Jin Seog Kim(2), Jarnuzi Gunlazuardi(3)

(1) Gas Metrology Group, Research Centre for Chemistry-Indonesian Institute of Sciences (RCC-LIPI), Kawasan PUSPIPTEK Serpong, 15314, Tangerang
(2) Centre for Gas Analysis, Quality of Life Division, Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok 16424, West Java
(*) Corresponding Author

Abstract


In this report, the results from a study on the influence of operational parameters on TiO2 photocatalytic activity for CO2 reduction under an ultraviolet-visible (UV-vis) illumination are presented. The results indicated that the TiO2 was found to be active for CO2 reduction with CH3OH as the major products, while other minor products (CO, CH4, and C2H4) were also detected. In addition, the formation of such reduction products was obviously influenced by the operational parameters. Under this study, the optimum operational parameters for CO2 reduction at 298 °K were determined to be: NaOH concentration 0.2 M, TiO2 dosage 2 g/L, volume of the reaction media 75 mL, the pressure of system 800 kPa. It was also found that the increase in UV-vis illumination time have increased the yield of product formation. A possible reaction pathway for the formation of the reduction products is also discussed.

Keywords


titania; TiO2; photocatalytic; reduction; carbon dioxide

Full Text:

Full Text Pdf


References

[1] Pandiangan, K.D., and Simanjuntak, W., 2013, Indo. J. Chem., 13 (1), 47–52.

[2] Usubharatana, P., McMartin, D., Veawab, A., and Tontiwachwuthikul, P., 2006, Ind. Eng. Chem. Res., 45 (8), 2558–2568.

[3] Sasirekha, N., Basha, S.J.S., and Shanthi, K., 2006, Appl. Catal., B, 62 (1-2), 169–180.

[4] Reli, M., Šihor, M., Koči, K., Praus, P., Kozák, O., and Obalová, L., 2012, GeoSci. Eng., 58 (1), 34–42.

[5] Srinivas, B., Shubhamangala, B., Lalitha, K., Reddy, P.A., Kumari, V.D., Subrahmanyam, M., and De, B.R., 2011, Photochem. Photobiol., 87 (5), 995–1001.

[6] Hashimoto, K., Irie, H., and Fujishima, A., 2005, Jpn. J. Appl. Phys., 44 (12), 8269–8285.

[7] Fan, Y., Chen, G., Li, D., Luo, Y., Lock, N., Jensen, A.P., Mamakhel, A., Mi, J., Iversen, S.B., Meng, Q., and Iversen, B.B., 2012, Int. J. Photoenergy, ID 173865, 1–7.

[8] Adachi, K., Ohta, K., and Mizuno, T., 1994, Sol. Energy, 53 (2), 187–190.

[9] Kočí, K., Matějů, K., Obalová, L., Krejčíková, S., Lacný, Z., Plachá, D., Čapek, , Hospodková, A., and Šolcová, O., 2010, Appl. Catal., B, 96 (3-4), 239–244.

[10] Mizuno, T., Tsutsumi, H., Ohta, K., Saji, A., and Noda, H., 1994, Chem. Lett., 23 (8), 1533–1536.

[11] Slamet, Nasution, H.W., Purnama, E., Kosela, S. and Gunlazuardi, J., 2005, Catal. Commun., 6 (5), 313–319.

[12] Tseng, I-H., Chang, W-C., and Wu, J.C.S., 2002, Appl. Catal., B, 37 (1), 37–48.

[13] Zhang, Q-H., Han, W-D., Hong, Y-J., and Yu, J-G., 2009, Catal. Today, 148 (3-4), 335–340.

[14] Yamashita, H., Nishiguchi, H., Kamada, N., Anpo, M., Teraoka, Y., Hatano, H., Ehara, S., Kikui, K., Palmisano, L., Sclafani, A., Schiavello, M., and Fox, M.A., 1994, Res. Chem. Intermed, 20 (8), 815–823.

[15] Kwon, S., Fan, M., Cooper, A.T., and Yang, H., 2008, Crit. Rev. Env. Sci. Technol., 38 (3), 197–226.

[16] Yoneyama, H., 1997, Catal. Today, 39 (3), 169–175.

[17] Zuas, O., Wibowo, W., Krisnandi, Y.K., Gunlazuardi, J., and Kim, J.S., to be published elsewhere.

[18] Zuas, O., Abimanyu, H., and Wibowo, W., 2014, Proc. Appl. Ceram., 8 (1), 39–46.

[19] Ambrus, Z., Mogyorósi, K., Szalai, Á., Alapi, T., Demeter, K., Dombi, A., and Sipos, P., 2008, Appl. Catal., A, 340 (2), 153–161.

[20] Guo, Y-G., Hu, Y-S., and Maier, J., 2006, Chem. Commun., 26, 2783–2785.

[21] Karthick, S.N., Prabakar, K., Subramania, A., Hong, J-T., Jang, J-J., and Kim, H-J., 2010, Powder Technol., 205 (1-3), 36–41.

[22] Liu, L., and Li, Y., 2014, Aerosol Air Qual. Res., 14, 453–469.

[23] Anpo, M., Yamashita, H., Ichihashi, Y., and Ehara, S., 1995, J. Electroanal. Chem., 396 (1-2), 21–26.

[24] Kočí, K., Obalová, L., Matejová, L., Plachá, D., Lacný, Z., Jirkovský, J., and Solcová, O., 2009, Appl. Catal., B, 89 (3-4), 494–502.

[25] Slamet, 2004, Photocatalytic Reduction of CO2 over TiO2 and Cu-TiO2 Catalysts, Doctoral Thesis, University of Indonesia, Depok.

[26] Slamet, Nasution, H.W., Purnama, E., Riyani, K., and Gunlazuardi, J., 2009, World Appl. Sci., 6 (1), 112–122.

[27] Andayani, W., and Bagyo, A.N., 2011, Indo. J. Chem., 11 (3), 253–257.

[28] Liu, S., Zhao, Z., and Wang, Z., 2007, Photochem. Photobiol. Sci., 6 (6), 695–700.

[29] Yang, H., Zang, K., Shi, R., and Tang, A., 2007, J. Am. Ceram. Soc., 90 (5), 1370–1374.

[30] Koci, K., Obalová, L., Plachá, D., and Lacný, Z., 2008, Collect. Czech. Chem. Commun., 73 (8-9), 1192–1204.

[31] Kaneco, S., Shimizu, Y., Ohta, K., and Mizuno, T., 1998, J. Photochem. Photobiol., A, 115 (3), 223–226.

[32] Mizuno, T., Adachi, K., Ohta, K., and Saji, A., 1996, J. Photochem. Photobiol., A, 98 (1-2), 87–90.

[33] Kočí, K., Obalová, L., and Lacný, Z., 2008, Chem. Pap., 62 (1), 1–9.

[34] Mozia, S., Tomaszewska, M., and Worawski, A.W., 2005, Desalination, 185 (1-3), 449–456.

[35] Fox, M.A., and Dulay, M.T., 1993, Chem. Rev., 93 (1), 341–357.

[36] Kohno, Y., Hayashi, H., Takenaka, S., Tanaka, T., Funabiki, T., and Yoshida, S., 1999, J. Photochem. Photobiol., A, 126 (1-3), 117–123.



DOI: https://doi.org/10.22146/ijc.21248

Article Metrics

Abstract views : 2129 | views : 1829


Copyright (c) 2014 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.