The Effect of Caramelization and Carbonization Temperatures toward Structural Properties of Mesoporous Carbon from Fructose with Zinc Borosilicate Activator

https://doi.org/10.22146/ijc.21236

Tutik Setianingsih(1*), Indriana Kartini(2), Yateman Arryanto(3)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran Malang 65145
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281
(*) Corresponding Author

Abstract


Mesoporous carbon was prepared from fructose using zinc borosilicate (ZBS) activator. The synthesis involves caramelization and carbonization processes. The effect of both process temperature toward porosity and functional group of carbon surface are investigated in this research. The caramelization was conducted hydrothermally at 85 and 100 °C, followed by thermally 130 °C. The carbonization was conducted at various temperatures (450–750 °C). The carbon-ZBS composite were washed by using HF 48% solution, 1M HCl solution, and aquadest respectively to remove ZBS from the carbon. The carbon products were characterized with nitrogen gas adsorption-desorption method, FTIR spectrophotometry, X-ray diffraction, and Transmission Electron Microscopy. The highest mesopore characteristics is achieved at 100 °C (caramelization) and 450 °C (carbonization), including Vmeso about 2.21 cm3/g (pore cage) and 2.32 cm3/g (pore window) with pore uniformity centered at 300 Å (pore cage) and 200 Å (pore window), containing the surface functional groups of C=O and OH, degree of graphitization about 57% and aromaticity fraction about 0.68.

Keywords


mesoporous carbon; zinc borosilicate; fructose; temperature

Full Text:

Full Text Pdf


References

[1] Ryoo, R., Joo, S.H., and Jun, S., 1999, J. Phys. Chem. B, 103 (37), 7743–7746.

[2] Chi, Y., Geng, W., Zhao, L., Yan, X., Yuan, Q., Li, N., and Li, X., 2012, J. Colloid Interface Sci., 369 (1), 366–372.

[3] Lorenc-Grabowska, E., and Gryglewicz, G., 2007, Dyes Pigm., 75 (1), 136–142.

[4] Vinu, A., Mori, T., and Ariga, K., 2006, Sci. Technol. Adv. Mater., 7 (8), 753–771.

[5] Manabe, T., Ohata, M., Yoshizawa, S., Nakajima, D., Goto, S., Uchida, K., and Yajima, H., 2012, Effect of Carbonization Temperature, www.geocities.jp/yasizato/Yoshizawa15.pdf, accessed on Nov. 5, 2012

[6] Hayashi, J., Kazehaya, A., Muroyama, K., and Watkinson, A.P., 2000, Carbon, 38 (13), 1873–1878.

[7] Shen, W., Yang, X., Guo, Q., Liu, Y., Song, Y., Han, Z., Sun, Q., and Cheng, J., 2006, Mater. Lett., 60 (29-30), 3517–3521.

[8] Lu, A-H., Tüysüs, H., and Schüth, F., 2007, Microporous Mesoporous Mater., 111 (1-3), 117–123.

[9] Onal, Y., Akmil-Başar, C., Sarici-Ozdemir, C., and Erdoğan, S, 2006, J. Hazard Mater., 142 (1-2), 138–143.

[10] Zhu, Z., Li, A.M., Xia, M., Wan, J., and Zhang, Q., 2008, Chin. J. Polym. Sci., 26 (5), 645−651.

[11] Huang, Y., Hu, S., Zuo, S., Xu, Z., Han, C., and Shen, J., 2009, J. Mater. Chem., 19 (11), 7759–7764.

[12] Weinbauer, M.G., and Peduzzi, P., 1994, Mar. Ecol. Prog. Ser., 108, 11–20.

[13] Hunt, R., 2011, Virology Chapter Eighteen Hepatitis Viruses, Microbiology and Immunology On-line, University of South Carolina, http://pathmicro.med.sc.edu/virol/hepatitis-virus.htm, accessed on Dec. 7, 2013.

[14] Lee, H.I., Stucky, G.D., Kim, J.H., Pak, C., Chang, H., and Kim, J.M., 2011, Adv. Mater., 23 (20), 2357–2361.

[15] Yoon, S.O., Jo, T.H., Kim, K.S., and Kim, S., 2008, Ceram. Int., 34 (8), 2155–2157.

[16] Eltepe, H.E., 2004, The Development of Zinc Borate Production Process, Dissertation, Chemical Engineering Department, Izmir Institute of Technology, Turkey.

[17] Armelao, L., Fabrizio, M., Gialanella, S., and Zordan, F., 2001, Thin Solid Films, 394 (1-2), 89–95.

[18] Falcone, J., 1982, ACS Symp. Ser., 194, 133–148

[19] Shriver, D.F., Atkins, P.W., Langford, C.H., 1990, Inorganic Chemistry, Oxford Univ. Press, Oxford.

[20] Bowser, J., 1993, Inorganic Chemistry, Pubs.co., New York.

[21] Seo, J-A., Oh, J., Kim, D.J., Kim, H.K., and Hwang, Y-H., 2004, J. Non-Cryst. Solids, 333 (1), 111–114.

[22] Zhao, J., Lai, C., Dai, Y., and Xie, J., 2007, Mater. Lett., 61 (23-24), 4639–4642.

[23] Rosatella, A.A., Simeonov, S.P., Frade, R.F.M., and Afonso, C.A.M., 2011, Green Chem., 13 (4), 754–793.

[24] Chang, W.M., Chen, Y.T., and Shu, C.C., 1998, Food Preserv., 24 (2), 87–93.

[25] Quintas, M., Brandão, T.R.S., and Silva, C.L.M., 2007, J. Food Eng., 78 (2), 537–545.

[26] Lowell, S., Shield, J.E., Thomas, M.A., and Thommes, M., 2004, Characterization of Porous Solids and Powders: Surface Area, Pore Size, and Density, Kluwer Academic Publishers, London, 38–40

[27] Girisuta, B., 1975, Levulinic Acid from Lignocellulosic Biomass , Thesis, University of Groningen, Groningen

[28] Kuster, B.F.M., 1990, Starch, 42 (8), 314–321.

[29] Calas, G., Grand, M.L., Galoisy, L., and Ghaleb, D., 2003, J. Nucl. Mater., 322 (1), 15–20.

[30] Marsh, H., and Reinoso, F.R., 2006, Activated Carbon, Elsevier Sci., USA, 331

[31] Shen, W., Li, Z., and Liu, Y., 2008, Recent Pat. Chem. Eng., 1 (1), 27–40

[32] Nwosu, F.O., Olu-Owolabi, B.I., Adebowale, K.O., Henle, T., and Schwarzenbolz, U., 2009, Biodivers. Bioavailability, 3 (2), 89–95.

[33] Lua, A.C., and Yang, T., 2005, J. Colloid Interface Sci., 290 (2), 505–513.

[34] Chayande, P.K., Singh, S.P., and Yenkie, M.K.N., 2013, Chem. Sci. Trans., 2 (3), 835–840.

[35] Allwar, 2012, Characteristics of Micro- and Mesoporous Structure and Surface Chemistry of Activated Carbons Produced by Oil Palm Shell, International Conference On Chemical, Ecology and Environmental Sciences (ICEES 2012), Bangkok.

[36] Naseh, M.V., Khodadadi, A.A., Mortazavi, Y., Sahraei, O.A., Pourfayaz, F., and Sedghi, S.M., 2009, World Academy of Science, Engineering and Technology 49, 3, 134–136.

[37] Mahalakshmy, R., Indraneel, P., and Viswanathan, B., 2009, Indian J. Chem., Sect A, 48A (3), 352–356.

[38] Deng, Y., Liu, C., Yu, T., Liu, F., Zhang, F., Wang, C., Tu, B., Webley, P.A., Wang, H., and Zhao, D., 2007, Chem. Mater., 19 (13), 3271–3277.

[39] Cao, Y., Cao, J., Zheng, M., Liu, J., and Ji, G., 2007, J. Solid State Chem., 180 (2), 792–798.

[40] Yi, JH., Ko, YN., Koo, HY., Jung, DS., and Kang, YC., 2011, J.Ceram.Process.Res., 12 (2), 122-125

[41] Windolz, M., Budavari, S., Blumeti, R.F., and Otterbein, E.S., 1983, The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biological, 10th ed., Merck & Co., Inc., USA

[42] Sevim, F., Demir, F., Bilen, M., and Okur, H., 2006, Korean J. Chem. Eng., 23 (5), 736–740.

[43] Manoj, B., and Kunjomana, A.G., 2012, Int. J. Electrochem. Sci., 7, 3127–3134.

[44] Feret, F.R., 1998, Analyst, 123 (4), 595–600.



DOI: https://doi.org/10.22146/ijc.21236

Article Metrics

Abstract views : 2430 | views : 5625


Copyright (c) 2014 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.