Anionic and Cationic Dyes Removal from Aqueous Solutions by Adsorption onto Synthetic Mg/Al Hydrotalcite-Like Compound

https://doi.org/10.22146/ijc.21190

Eddy Heraldy(1*), Sri Juari Santosa(2), Triyono Triyono(3), Karna Wijaya(4)

(1) Department of Chemistry, University of Sebelas Maret, Jl. Ir. Sutami 36A Kentingan Surakarta 57126
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO BOX BLS 21 Yogyakarta 55281
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO BOX BLS 21 Yogyakarta 55281
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO BOX BLS 21 Yogyakarta 55281
(*) Corresponding Author

Abstract


The current investigation reports an effective adsorption of both anionic species and cationic dyes on Mg/Al hydrotalcite-like compounds (Mg/Al HTlc) synthetic from brine water, as novel, inexpensive available alternative to the commercial hydrotalcite. The feasibility of the Mg/Al HTlc, for the adsorptive removal of both anionic (Eosin Yellow-EY and Methyl Orange-MO) and cationic (Methylene blue-MB) dyes from aqueous solution was evaluated in a batch process. Dyes adsorption process was thoroughly studied from both kinetic and equilibrium points of view for all adsorbents. The adsorption kinetics was tested for the pseudo-first order and pseudo-second order kinetic models at different experimental conditions. The dyes adsorption follows the pseudo-second order kinetics model, with correlation coefficients close to unity when experimental data were fitted in the model. The experimental isotherm data were analyzed using Langmuir and Freundlich isotherms. The results from Langmuir isotherm indicated that the capacity of Mg/Al HTlc for the adsorption of anionic dyes was higher than that for cationic dyes.

Keywords


anionic dye; cationic dye; Mg/Al Hydrotalcite-like synthetic; commercial hydrotalcite

Full Text:

Full Text Pdf


References

[1] Forgacs, E., Cserháti, T., and Oros, G., 2004, Environ. Int., 30 (7), 953–971.

[2] Kumar, P.S., Ramalingam, S., Senthamarai, C., Niranjanaa, M., Vijayalakshmi, P., and Sivanesan, S., 2010, Desalination, 261 (1-2), 52–60.

[3] Hameed, B.H., 2009, J. Hazard. Mater., 162 (2-3), 939–944.

[4] Errais, E., Duplay, J., Darragi, F., M'Rabet, I., Aubert, A., Huber, F., and Morvan, G., 2011, Desalination, 275 (1-3), 74–81.

[5] Errais, E., Duplay, J., Elhabiri, M., Khodja, M., Ocampo, R., Baltenweck-Guyot, R., and Darragi, F., 2012, Colloids Surf., A, 403, 69-78.

[6] Li, F., and Duan, X., 2006, Struct. Bond., 119, 193–223.

[7] Evans, D.G., and Duan, X., 2006, Chem. Commun., 5, 485–496.

[8] Cavani, F., Trifiro, F., and Vaccari, A., 1991, Catal. Today, 11 (2), 173–301.

[9] He, J., Wei, M., Li, B., Kang, Y., Evans, D.G., and Duan, X., 2006, Struct. Bond., 119, 89–119.

[10] Lv, L., He, J., Wei, M., Evans, D.G., and Zhou, Z., 2007, Water Res., 41 (7), 1534–1542.

[11] Rives, V., 2002, Mater. Chem. Phys., 75 (1-3), 19–25.

[12] Bouzaid, J.M., Frost, R.L., and Martens, W.N., 2007, J. Therm. Anal. Calorim., 89 (2), 511–519.

[13] Palmer, S.J., Spratt, H.J., and Frost, R.L., 2009, J. Therm. Anal. Calorim., 95 (1), 123–129.

[14] Yu, Y., Zhuang, Y-Y., and Wang, Z-H., 2001, J. Colloid Interface Sci., 242 (2), 288–293.

[15] Ulibarri, M.A., Pavlovic, I., Barriga, C., Hermosı́n, M.C., and Cornejo, J., 2001, Appl. Clay Sci., 18 (1-2), 17–27.

[16] Cheng, X., Huang, X., Wang, X., and Sun, D., 2010, J. Hazard. Mater., 177 (1-3), 516–523.

[17] Heraldy, E., Prasasti, D, Wijaya, K., Santosa, S.J., and Triyono, 2012, Jurnal Bumi Lestari, 12 (1), 16–23.

[18] Kameda, T., Yoshioka, T., Uchida, M., and Okuwaki, A., 2000, Mol. Cryst. Liq. Cryst., 341 (2), 407–412.

[19] Millange, F., Walton, R.I., and O’Hare, D., 2000, J. Mater. Chem., 10 (7), 1713–1720.

[20] Wang, Y., Zhang, F., Xu, S., Wang, X., Evans, D.G., and Duan, X., 2008, Ind. Eng. Chem. Res., 47 (15), 5746–5750.

[21] Kloprogge, J.T., and Frost, R.L., 1999, J. Solid State Chem., 146 (2), 506–515.

[22] Han, R., Zhang, J., Han, P., Wang, Y., Zhao, Z., and Tang, M., 2009, Chem. Eng. J., 145 (3), 496–504.

[23] Ho, Y.S., and McKay, G., 1998, Chem. Eng. J., 70 (2), 115–124.

[24] Goh, K.H., Lim, T.T., and Dong, Z., 2009, Environ. Sci. Technol., 43 (7), 2537–2543.

[25] Onyango, M.S., Kojima, Y., Aoyi, O., Bernardo, E.C., and Matsuda, H., 2004, J Colloid Interface Sci., 279 (2), 341–350.

[26] Jain, A.K., Gupta, V.K., Jain, S., and Suhas, 2004, Environ. Sci. Technol., 38 (4), 1195–2000.

[27] Gupta, S., and Babu, B.V., 2009, J. Environ. Manage., 90 (10), 3013–3022.

[28] Greluk, M., and Hubicki, Z., 2010, Chem. Eng. J., 162 (3), 919–926.

[29] Yang, H., and Feng, Q., 2010, J. Hazard. Mater., 180 (1-3), 106–114.

[30] Özcan, A., Ömeroğlu, Ç., Erdoğan, Y., and Özcan, A.S., 2007, J. Hazard. Mater., 140 (1-2), 173–179.



DOI: https://doi.org/10.22146/ijc.21190

Article Metrics

Abstract views : 2829 | views : 2660


Copyright (c) 2015 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.