Enhanced Photocatalytic Activity and Magnetic Properties of CoFe2O4/TiO2-Ag/S for Visible Light-Driven Photodegradation of Methylene Blue

https://doi.org/10.22146/ijc.100142

Eko Sri Kunarti(1*), Dewi Agustiningsih(2), Fajar Inggit Pambudi(3), Akhmad Syoufian(4), Sri Juari Santosa(5)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


Environmental concerns drive the need for effective photocatalysts that can operate under visible light to degrade organic pollutants in wastewater. This study investigated TiO2-based photocatalyst doped with Ag and S to enhance its visible-light response, modified further with CoFe2O4 to introduce magnetic properties, resulting in a composite, CoFe2O4/TiO2-Ag/S. The synthesis was carried out by using cobalt nitrate hexahydrate and ferric nitrate nonahydrate for CoFe2O4 precursor, titanium tetraisopropoxide for TiO2 precursor, and silver nitrate with thiourea for Ag and S dopants. Results from characterization analyses, including FTIR, XRD, UV-vis, SEM-EDX, TEM, and VSM, confirmed the composite structure, with magnetic properties reflected in saturation magnetization of 10.69 emu g−1 and an extended UV-vis absorption edge indicating improved visible light activity. Photocatalytic tests for methylene blue degradation showed the highest performance (92%) with a 1:1 Ag:S ratio under visible light at pH 10 over 120 min, using 20 mg of catalyst in 5 ppm solution. Additionally, the composite demonstrated strong stability, retaining efficiency across six cycles of reuse.

Keywords


CoFe2O4/TiO2 composite; doping; methylene blue; silver; sulfur

Full Text:

Full Text PDF


References

[1] Kocijan, M., Ćurković, L., Radošević, T., and Podlogar, M., 2020, Preparation, characterization and photocatalytic activity of TiO2/reduced graphene oxide nanocomposite, Proceedings of the 31st DAAAM International Symposium, Eds. B. Katalinic (Ed.), DAAAM International, Vienna, Austria, 668–676.

[2] Tichapondwa, S.M., Newman, J.P., and Kubheka, O., 2020, Effect of TiO2 phase on the photocatalytic degradation of methylene blue dye, Phys. Chem. Earth, 118-119, 102900.

[3] Ngapa, Y.D., and Ika, Y.E., 2020, Optimasi adsorpsi kompetitif pewarna biru metilena dan metil oranye menggunakan adsorben zeolit alam Ende - Nusa Tenggara Timur (NTT), Indones. J. Chem. Res., 8 (2), 151–158.

[4] Modirshahla, N., Hassani, A., Behnajady, M.A., and Rahbarfam, R., 2011, Effect of operational parameters on decolorization of Acid Yellow 23 from wastewater by UV irradiation using ZnO and ZnO/SnO2 photocatalysts, Desalination, 271 (1), 187–192.

[5] Kunarti, E.S., Agustiningsih, D., Pambudi, F.I., Rusli, S., and Rusdiarso, B., 2024, Silver-and-sulphur-codoped Fe3O4/TiO2 as a magnetically separable photocatalyst for methylene blue degradation under visible light, Molekul, 19 (1), 143–151.

[6] Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A.H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L.A., Shah, T., and Khan, I., 2022, Review on methylene blue: Its properties, uses, toxicity and photodegradation, Water, 14 (2), 242.

[7] Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., and Bahnemann, D.W., 2014, Understanding TiO2 photocatalysis: Mechanisms and materials, Chem. Rev., 114 (19), 9919–9986.

[8] Gar Alalm, M., Tawfik, A., and Ookawara, S., 2016, Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of pharmaceuticals, J. Environ. Chem. Eng., 4 (2), 1929–1937.

[9] Ichihashi, M., Ando, H., Yoshida, M., Niki, Y., and Matsui, M., 2009, Photoaging of the skin, Anti-Aging Med., 6 (6), 46–59.

[10] Ramacharyulu, P.V.R.K., Praveen Kumar, J., Prasad, G.K., and Sreedhar, B., 2014, Sulphur doped nano TiO2: Synthesis, characterization and photocatalytic degradation of a toxic chemical in presence of sunlight, Mater. Chem. Phys., 148 (3), 692–698.

[11] Piątkowska, A., Janus, M., Szymański, K., and Mozia, S., 2021, C-, N- and S-doped TiO2 photocatalysts: A review, Catalysts, 11 (1), 144.

[12] Zhu, M., Zhai, C., Qiu, L., Lu, C., Paton, A.S., Du, Y., and Goh, M.C., 2015, New method to synthesize S-doped TiO2 with stable and highly efficient photocatalytic performance under indoor sunlight irradiation, ACS Sustainable Chem. Eng., 3 (12), 3123–3129.

[13] Stefan, M., Leostean, C., Toloman, D., Popa, A., Macavei, S., Falamas, A., Suciu, R., Barbu-Tudoran, L., Marincas, O., and Pana, O., 2021, New emerging magnetic, optical and photocatalytic properties of Tb doped TiO2 interfaced with CoFe2O4 nanoparticles, Appl. Surf. Sci., 570, 151172.

[14] Sun, Q., Wu, S., Li, K., Han, B., Chen, Y., Pang, B., Yu, L., and Dong, L., 2020, The favourable synergistic operation of photocatalysis and catalytic oxygen reduction reaction by a novel heterogeneous CoFe2O4-TiO2 nanocomposite, Appl. Surf. Sci., 516, 146142.

[15] Krishna, S., Sathishkumar, P., Pugazhenthiran, N., Guesh, K., Mangalaraja, R.V., Kumaran, S., Gracia-Pinilla, M.A., and Anandan, S., 2020, Heterogeneous sonocatalytic activation of peroxomonosulphate in the presence of CoFe2O4/TiO2 nanocatalysts for the degradation of Acid Blue 113 in an aqueous environment, J. Environ. Chem. Eng., 8 (5), 104024.

[16] Syoufian, A., and Nakashima, K., 2008, Degradation of methylene blue in aqueous dispersion of hollow titania photocatalyst: Study of reaction enhancement by various electron scavengers, J. Colloid Interface Sci., 317 (2), 507–512.

[17] de Queiroz, D.F., de Camargo, E.R., and Martines, M.A.U., 2020, Synthesis and characterization of magnetic nanoparticles of cobalt ferrite coated with silica, Biointerface Res. Appl. Chem., 10 (1), 4908–4913.

[18] Shabani, A., Nabiyouni, G., and Ghanbari, D., 2022, Preparation and photocatalytic study of CoFe2O4/TiO2/Au nanocomposites and their applications in organic pollutant degradation and modeling by an artificial neural network (ANN), J. Mater. Sci.: Mater. Electron., 33 (13), 9885–9904.

[19] Chougala, L.S., Yatnatti, M.S., Linganagoudar, R.K., Kamble, R.R., and Kadadevarmath, J.S., 2017, A simple approach on synthesis of TiO2 nanoparticles and its application in dye sensitized solar cells, J. Nano- Electron. Phys., 9 (4), 04005.

[20] Agustiningsih, D., Kunarti, E.S., Nuryono, N., Santosa, S.J., Darussalam Mardjan, M.I., Kamiya, Y., and Otomo, R., 2024, Novel nickel-immobilized-SiO2-TiO2 fine particles in the presence of cetyltrimethylammonium bromide as a catalyst for ultrasound-assisted-Kumada cross-coupling reaction, Heliyon, 10 (14), e34614.

[21] Iqbal, W., Mekki, M., Rehman, W., Shahzad, B., Anwar, U., Mahmood, S., and Talukder, M.E., 2023, Electrical properties of TiO2/CO3O4 core/shell nanoparticles synthesized by sol-gel method, Dig. J. Nanomater. Biostruct., 18 (1), 403–410.

[22] Kokorin, A.I., Amal, R., Teoh, W.Y., and Kulak, A.I., 2017, Studies of nanosized iron-doped TiO2 photocatalysts by spectroscopic methods, Appl. Magn. Reson., 48 (5), 447–459.

[23] Karuppasamy, P., Ramzan Nilofar Nisha, N., Pugazhendhi, A., Kandasamy, S., and Pitchaimuthu, S., 2021, An investigation of transition metal doped TiO2 photocatalysts for the enhanced photocatalytic decoloration of methylene blue dye under visible light irradiation, J. Environ. Chem. Eng., 9 (4), 105254.

[24] Zhang, Q., Yu, L., Yang, B., Xu, C., Zhang, W., Xu, Q., and Diao, G., 2021, Magnetic Fe3O4@Ru-doped TiO2 nanocomposite as a recyclable photocatalyst for advanced photodegradation of methylene blue in simulated sunlight, Chem. Phys. Lett., 774, 138609.

[25] Jerin, I., Rahman, M.A., Khan, A.H., and Hossain, M.M., 2024, Photocatalytic degradation of methylene blue under visible light using carbon-doped titanium dioxide as photocatalyst, Desalin. Water Treat., 320, 100711.

[26] Zhang, X., Chen, W.F., Bahmanrokh, G., Kumar, V., Ho, N., Koshy, P., and Sorrell, C.C., 2020, Synthesis of V- and Mo-doped/codoped TiO2 powders for photocatalytic degradation of methylene blue, Nano-Struct. Nano-Objects, 24, 100557.

[27] Verma, V., and Singh, S.V., 2023, La-doped TiO2 nanoparticles for photocatalysis: Synthesis, activity in terms of degradation of methylene blue dye and regeneration of used nanoparticles, Arabian J. Sci. Eng., 48 (12), 16431–16443.

[28] Lal, M., Sharma, P., and Ram, C., 2022, Synthesis and photocatalytic potential of Nd-doped TiO2 under UV and solar light irradiation using a sol-gel ultrasonication method, Results Mater., 15, 100308.

[29] Gómez, I.J., Díaz-Sánchez, M., Pizúrová, N., Zajíčková, L., Prashar, S., and Gómez-Ruiz, S., 2023, Crystalline F-doped titanium dioxide nanoparticles decorated with graphene quantum dots for improving the photodegradation of water pollutants, J. Photochem. Photobiol., A, 443, 114875.

[30] Mishra, S., Chakinala, N., Chakinala, A.G., and Surolia, P.K., 2022, Photocatalytic degradation of methylene blue using monometallic and bimetallic Bi-Fe doped TiO2, Catal. Commun., 171, 106518.



DOI: https://doi.org/10.22146/ijc.100142

Article Metrics

Abstract views : 157 | views : 43


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.