Overexpression and purification of YidRv gene from the hypervirulent Klebsiella pneumoniae, and the ability of the gene product in inducing a humoral response

https://doi.org/10.22146/ijbiotech.95222

Tri Yudani Mardining Raras(1*), Mauludy Jutta Ajrullah(2), Ellen Fenix Gunawan(3), Nadya Shafa Pramesti(4), Sumarno Reto Prawiro(5), Agustin Krisna Wardani(6), Is Helianti(7)

(1) Department of Biochemistry‐Molecular Biology, Faculty of Medicine, Universitas Brawijaya, Jl. Veteran, Malang, Indonesia
(2) Master Program in Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Jl. Veteran, Malang, Indonesia
(3) Bachelor Program in Biotechnology, Faculty of Agricultural Technology, Universitas Brawijaya, Jl. Veteran, Malang, Indonesia
(4) Bachelor Program in Biotechnology, Faculty of Agricultural Technology, Universitas Brawijaya, Jl. Veteran, Malang, Indonesia
(5) Department of Clinical Microbiology, Faculty of Medicine, Universitas Brawijaya, Jl. Veteran, Malang, Indonesia
(6) Department of Food Science and Biotechnology, Faculty of Agricultural Technology, Universitas Brawijaya, Jl. Veteran, Malang, Indonesia
(7) Research Center for Genetic Engineering, KST Soekarno, Jalan Raya Bogor Km 46, Cibinong, Jawa Barat, Indonesia
(*) Corresponding Author

Abstract


The yidRv gene, isolated from the hypervirulent Klebsiella pneumoniae (hvKP), is a novel gene with an unknown function; however, it has exhibited high homology to the yidR, a gene recognized as potential vaccine candidate. The aim of this study was to clone the yidRv gene from the Indonesian hvKP and to investigate its overexpression in Escherichia coli. In the experiment, yidRv was cloned into pET21 to construct pYik23. Recombinant protein YidRv was produced by growing E. coli BL21 (DE3)/pYik23 in LB medium with ampicillin at 29 °C, inducing protein synthesis with 0.5 mM IPTG for 20 hours. Purification was performed using Ni‐NTA resin, and the purified protein (50 µg) was administered to BALB/c mice to test for the production of IgG, IgM and IgA on 2 days before and day 19th and 37th after the first vaccination. The results show a significant induction of IgG and IgM, but not of IgA antibodies. In conclusion, the yidRv gene was overexpressed in E. coli BL21 (DE3) at high levels in soluble form, with the recombinant protein able to be purified to 90% homogeneity. The recombinant YidRv demonstrated the ability to stimulate the generation of both IgM and IgG antibodies.


Keywords


Hypervirulent; Klebsiella pneumoniae; Overexpression; Recombinant antigen YidRv

Full Text:

PDF


References

Akkaya M, Kwak K, Pierce SK. 2020. B cell memory: building two walls of protection against pathogens. Nat. Rev. Immunol. 20(4):229–238. doi:10.1038/s41577­019­0244­2.

Babu L, Uppalapati SR, Sripathy MH, Reddy PN. 2017. Evaluation of recombinant multi­epitope outer membrane protein­based Klebsiella pneumoniae subunit vaccine in mouse model. Front. Microbiol. 8:1805. doi:10.3389/fmicb.2017.01805.

Banerjee K, Motley MP, Diago­Navarro E, Fries BC. 2021. Serum antibody responses against carbapenem­resistant Klebsiella pneumoniae in infected patients. mSphere 6(2):e01335–20. doi:10.1128/msphere.01335­20.

Booth WT, Schlachter CR, Pote S, Ussin N, Mank NJ, Klapper V, Offermann LR, Tang C, Hurlburt BK, Chruszcz M. 2018. Impact of an Nterminal polyhistidine tag on protein thermal stability. ACS Omega 3(1):760–768. doi:10.1021/acsomega.7b01598.

Chung YH, Volckaert BA, Steinmetz NF. 2023. Development of a modular NTA:His tag viral vaccine for co­delivery of antigen and adjuvant. Bioconjug. Chem. 34(1):269–278. doi:10.1021/acs.bioconjchem.2c00601.

Diago­Navarro E, Motley MP, Ruiz­Peréz G, Yu W, Austin J, Seco BM, Xiao G, Chikhaly A, Seeberger PH, Fries BC. 2018. Novel, broadly reactive anticapsular antibodies against carbapenem­resistant Klebsiella pneumoniae protect from infection. MBio 9(2):e00091–18. doi:10.1128/mBio.00091­18.

Du F, Liu YQ, Xu YS, Li ZJ, Wang YZ, Zhang ZX, Sun XM. 2021. Regulating the T7 RNA polymerase expression in E. coli BL21 (DE3) to provide more host options for recombinant protein production. Microb. Cell Fact. 20(1):189. doi:10.1186/s12934­021­ 01680­6.

Kervevan J, Chakrabarti LA. 2021. Role of CD4+ T cells in the control of viral infections: Recent advances and open questions. Int. J. Mol. Sci. 22(2):523. doi:10.3390/ijms22020523.

Krupka M, Masek J, Barkocziova L, Knotigova PT, Kulich P, Plockova J, Lukac R, Bartheldyova E, Koudelka S, Chaloupkova R, Sebela M, Zyka D, Droz L, Effenberg R, Ledvina M, D Miller A, Turanek J, Raska M. 2016. The position of his­Tag in recombinant OspC and application of various adjuvants affects the intensity and quality of specific antibody response after immunization of experimental mice. PLoS One 11(2):e0148497. doi:10.1371/journal.pone.0148497.

Lopez VA, Park BC, Nowak D, Sreelatha A, Zembek P, Fernandez J, Servage KA, Gradowski M, Hennig J, Tomchick DR, Pawłowski K, Krzymowska M, Tagliabracci VS. 2019. A bacterial effector mimics a host HSP90 client to undermine immunity. Cell 179(1):205–218. doi:10.1016/j.cell.2019.08.020.

Mauro VP. 2018. Codon optimization in the production of recombinant biotherapeutics: Potential risks and considerations. BioDrugs 32(1):69–81. doi:10.1007/s40259­018­0261­x.

Mishra M, Tiwari S, Gomes AV. 2017. Protein purification and analysis: Next generation western blotting techniques. Expert Rev. Proteomics 14(11):1037–1053. doi:10.1080/14789450.2017.1388167.

Permadi I, Helianti I, Prawiro SR, Raras TYM. 2024. Isolation of YidRhv gene from hypervirulent Klebsiella pneumoniae Indonesia strain and in silico study of gene product. Res J. Pharm. Technol. 17(3):1324–1. doi:10.52711/0974­360X.2024.00208.

Ravitchandirane G, Bandhu S, Chaudhuri TK. 2022. Multimodal approaches for the improvement of the cellular folding of a recombinant iron regulatory protein in E. coli. Microb. Cell Fact. 21(1):20. doi:10.1186/s12934­022­01749­w.

Rodrigues MX, Yang Y, de Souza Meira EB, do Carmo Silva J, Bicalho RC. 2020. Development and evaluation of a new recombinant protein vaccine (YidR) against Klebsiella pneumoniae infection. Vaccine 38(29):4640–4648. doi:10.1016/j.vaccine.2020.03.057.

Russo TA, Marr CM. 2019. Hypervirulent Klebsiella pneumoniae. Clin. Microbiol. Rev. 32(3):e00001–19. doi:10.1128/CMR.00001­19.

Sano K, Bhavsar D, Singh G, Floda D, Srivastava K, Gleason C, Amoako AA, Andre D, Beach KF, BermúdezGonzález MC, Cai G, Cognigni C, Kawabata H, Kleiner G, Lyttle N, Mendez W, Mulder LC, Oostenink A, Raskin A, Rooker A, Russo KT, Salimbangon ABT, Saksena M, Sominsky LA, Tcheou J, Wajnberg A, Carreño JM, Simon V, Krammer F. 2022. SARS­CoV­2 vaccination induces mucosal antibody responses in previously infected individuals. Nat. Commun. 13(1):5135. doi:10.1038/s41467­022­ 32389­8.

Soleymani B, Mostafaie A. 2019. Analysis of methods to improve the solubility of recombinant bovine sex determining region Y protein. Reports Biochem. Mol. Biol. 8(3):227–235.

Thakur A, Mikkelsen H, Jungersen G. 2019. Intracellular pathogens: Host immunity and microbial persistence strategies. J. Immunol. Res. 2019:1356540. doi:10.1155/2019/1356540.

Yang Y, Higgins CH, Rehman I, Galvao KN, Brito IL, Bicalho ML, Song J, Wang H, Bicalho RC. 2019. Genomic diversity, virulence, and antimicrobial resistance of Klebsiella pneumoniae strains from cows and humans. Appl. Environ. Microbiol. 85(6):e02654–18. doi:10.1128/AEM.02654­18.

Zhao D, Huang Z, Liu J, Ma L, He J. 2018. Expression, purification, and characterization of Nterminal His­tagged proteins with mutations in zinc finger 3 of zinc finger protein ZNF191(243– 368). Prep. Biochem. Biotechnol. 48(10):914–919. doi:10.1080/10826068.2018.1514518.



DOI: https://doi.org/10.22146/ijbiotech.95222

Article Metrics

Abstract views : 309 | views : 244

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.