A robust in planta Agrobacterium‐mediated transformation in red chili (Capsicum annuum L.)

https://doi.org/10.22146/ijbiotech.94653

Anti Damayanti Hamdani(1), Syarul Nugroho(2), Rizkita Rachmi Esyanti(3), Ahmad Faizal(4), Sony Suhandono(5*)

(1) Doctoral Program of Biology, School of Life Sciences and Technology, Institut Teknologi Bandung, 40132 Bandung, Indonesia; Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Sunan Kalijaga, 55281 DI Yogyakarta, Indonesia
(2) Master Program of Biology, School of Life Sciences and Technology, Institut Teknologi Bandung, 40132 Bandung, Indonesia
(3) School of Life Sciences and Technology, Institut Teknologi Bandung, 40132 Bandung, Indonesia
(4) School of Life Sciences and Technology, Institut Teknologi Bandung, 40132 Bandung, Indonesia
(5) School of Life Sciences and Technology, Institut Teknologi Bandung, 40132 Bandung, Indonesia
(*) Corresponding Author

Abstract


Plant improvement through in vitro culture and genetic engineering is a significant aspect of breeding programs aimed at producing disease‐resistant cultivars of disease‐prone red chili (Capsicum annuum L.). However, the Capsicum genus is recalcitrant to genetic transformation and in vitro regeneration. Moreover, developing a universal transformation protocol is difficult due to its highly genotype‐dependent nature. Therefore, this study aimed to develop an Agrobacterium‐mediated in planta transformation method applicable to various red chili cultivars. Two open‐pollinated varieties, Tanjung 2 and Ciko, were subjected to transformation. The young seedlings were immersed in transformation medium containing Agrobacterium tumefaciens strain GV3101 harboring the binary vector pCAMBIA1301, which carries the β‐glucuronidase (GUS) gene. GUS histochemical analysis revealed that all the primary transformants of Tanjung 2 and Ciko were identified as chimeric. The average staining in the body of the seedlings was 88.63 + 26.33% in Tanjung 2, and 90.65 + 16.77% in the Ciko variety. More than 50% of the seedlings continued to express GUS in their shoot areas 10 days after Agrobacterium infection, indicating the possibility of transgene inheritance in the following generation. The in planta transformation approach is notably genotype independent, making it a promising standard transformation protocol for different red chili varieties.


Keywords


Ciko; GUS staining; In planta transformation; Red chili; Tanjung 2

Full Text:

PDF


References

Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP, Lemaux PG, Medford JI, OrozcoCárdenas ML, Tricoli DM, Van Eck J, Voytas DF, Walbot V, Wang K, Zhang ZJ, Neal Stewart C. 2016. Advancing crop transformation in the era of genome editing. Plant Cell 28(7):1510–1520. doi:10.1105/tpc.16.00196.

Amal TC, Karthika P, Dhandapani G, Selvakumar S, Vasanth K. 2020. A simple and efficient Agrobacteriummediated in planta transformation protocol for horse gram (Macrotyloma uniflorum Lam. Verdc.). J. Genet. Eng. Biotechnol. 18(1):9. doi:10.1186/s43141­020­ 00023­z.

Arthikala MK, Nanjareddy K, Lara M, Sreevathsa R. 2014. Utility of a tissue culture­independent Agrobacterium­mediated in planta transformation strategy in bell pepper to develop fungal disease resistant plants. Sci. Hortic. (Amsterdam). 170:61–69. doi:10.1016/j.scienta.2014.02.034.

Bagga S, Lucero Y, Apodaca K, Rajapakse W, Lujan P, Ortega JL, Sengupta­Gopalan C. 2019. Chile (Capsicum annuum) plants transformed with the RB gene from Solanum bulbocastanum are resistant to Phytophthora capsici. PLoS One 14(10):e0223213. doi:10.1371/journal.pone.0223213.

Basavaraju SN, Lakshmikanth RY, Makarla U. 2020. A modified in­planta transformation technique to generate stable gain­in function transformants in a recalcitrant indica rice genotype. Plant Physiol. Reports 25(2):231–244. doi:10.1007/s40502­020­00517­5.

Hamdani AD, Suhandono S, Esyanti RR. 2021. CRISPR/cas9 system to target proviral host genes involved in begomovirus infection: opportunities and challenges in Capsicum. Malaysian J. Biochem. Mol. Biol. 24(3):36–53.

Heidari­Zefreh AA, Shariatpanahi ME, Mousavi A, Kalatejari S. 2019. Enhancement of microspore embryogenesis induction and plantlet regeneration of sweet pepper (Capsicum annuum L.) using putrescine and ascorbic acid. Protoplasma 256(1):13– 24. doi:10.1007/s00709­018­1268­3.

Karthik S, Pavan G, Sathish S, Siva R, Kumar PS, Manickavasagam M. 2018. Genotype­independent and enhanced in planta Agrobacterium tumefaciens­mediated genetic transformation of peanut (Arachis hypogaea (L.)). 3 Biotech 8(4):202. doi:10.1007/s13205­018­1231­1.

Kim H, Choi J, Won KH. 2020. A stable DNA­free screening system for CRISPR/RNPs­mediated gene editing in hot and sweet cultivars of Capsicum annuum. BMC Plant Biol. 20(1):449. doi:10.1186/s12870­020­ 02665­0.

Kothari SL, Joshi A, Kachhwaha S, Ochoa­Alejo N. 2010. Chilli peppers ­ A review on tissue culture and transgenesis. Biotechnol. Adv. 28(1):35–48. doi:10.1016/j.biotechadv.2009.08.005.

Kumar AM, Reddy KN, Sreevathsa R, Ganeshan G, Udayakumar M. 2009. Towards crop improvement in bell pepper (Capsicum annuum L.): Transgenics (uid A::hpt II) by a tissue­cultureindependent Agrobacterium­mediated in planta approach. Sci. Hortic. (Amsterdam). 119(4):362– 370. doi:10.1016/j.scienta.2008.08.034.

Kumar RV, Sharma VK, Chattopadhyay B, Chakraborty S. 2012. An improved plant regeneration and Agrobacterium ­ mediated transformation of red pepper (Capsicum annuum L.). Physiol. Mol. Biol. Plants 18(4):357–364. doi:10.1007/s12298­012­0132­8.

Li JF, Park E, Von Arnim AG, Nebenführ A. 2009. The FAST technique: A simplified Agrobacterium­based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods 5:6. doi:10.1186/1746­4811­ 5­6.

Lin CS, Hsu CT, Yang LH, Lee LY, Fu JY, Cheng QW, Wu FH, Hsiao HC, Zhang Y, Zhang R, Chang WJ, Yu CT, Wang W, Liao LJ, Gelvin SB, Shih MC. 2018. Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single­cell mutation detection to mutant plant regeneration. Plant Biotechnol. J. 16(7):1295–1310. doi:10.1111/pbi.12870.

Maligeppagol M, Manjula R, Navale PM, Prasad Babu K, Kumbar BM, Laxman RH. 2016. Genetic transformation of chilli (Capsicum annuum L.) with Dreb1A transcription factor known to impart drought tolerance. Indian J. Biotechnol. 15(1):17–24.

Maren NA, Duan H, Da K, Craig Yencho G, Ranney TG, Liu W. 2022. Genotype­independent plant transformation. Hortic. Res. 9:uhac047. doi:10.1093/hr/uhac047.

Marwani E, Tangapo A, Dwivany F. 2013. Agrobacterium­-mediated stable transformation of medicinal plant Andrographis paniculata callus expressing GUS gene. Indones. J. Biotechnol. 18(2):92–100. doi:10.22146/ijbiotech.7873.

Mate T, Zoltan S, Zoltan T. 2021. Alternative method for the transformation of Capsicum species. J. Plant Sci. Phytopathol. 5:001–003. doi:10.29328/journal.jpsp.1001053.

Nagle M, Déjardin A, Pilate G, Strauss SH. 2018. Opportunities for innovation in genetic transformation of forest trees. Front. Plant Sci. 9:1443. doi:10.3389/fpls.2018.01443.

Niazian M, Sadatnoori SA, Galuszka P, Mortazavian SMM. 2017. Tissue culture­based Agrobacterium­mediated and in planta transformation methods. Czech J. Genet. Plant Breed. 53(4):133–143. doi:10.17221/177/2016­CJGPB.

Nivya VM, Shah JM. 2023. Recalcitrance to transformation, a hindrance for genome editing of legumes. Front. Genome Ed. 5:1247815. doi:10.3389/fgeed.2023.1247815.

Nugroho S. 2022. Optimization of transient and stable transformation for CRISPR/Cas9 genome editing system design in chilli pepper (Capsicum annuum L.) cv. Tanjung­2. Master’s thesis, Institut Teknologi Bandung, Bandung.

Pandey S, Patel MK, Mishra A, Jha B. 2016. In planta transformed cumin (Cuminum cyminum L.) plants, overexpressing the SbNHX1 gene showed enhanced salt endurance. PLoS One 11(7):e0159349. doi:10.1371/journal.pone.0159349.

Saifi SK, Passricha N, Tuteja R, Kharb P, Tuteja N. 2020. In planta transformation: A smart way of crop improvement. Swaston: Woodhead Publishing. doi:10.1016/b978­0­12­818581­0.00021­8.

Saifi SK, Passricha N, Tuteja R, Nath M, Gill R, Gill SS, Tuteja N. 2023. OsRuvBL1a DNA helicase boost salinity and drought tolerance in transgenic indica rice raised by in planta transformation. Plant Sci. 335:111786. doi:10.1016/j.plantsci.2023.111786.

Verma S, Dhiman K, Srivastava DK. 2013. Efficient in vitro regeneration from cotyledon explants in bell pepper (Capsicum annuum L. Cv. California wonder). Int. J. Adv. Biotechnol. Res. 4(3):391–396.

Wu HY, Liu KH, Wang YC, Wu JF, Chiu WL, Chen CY, Wu SH, Sheen J, Lai EM. 2014. AGROBEST: An efficient Agrobacterium­-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods 10(1):19. doi:10.1186/1746­4811­10­19.

Xu N, Kang M, Zobrist JD, Wang K, Fei SZ. 2022. Genetic transformation of recalcitrant upland switchgrass using morphogenic genes. Front. Plant Sci. 12:781565. doi:10.3389/fpls.2021.781565.



DOI: https://doi.org/10.22146/ijbiotech.94653

Article Metrics

Abstract views : 348 | views : 332

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.