Metagenomic analysis of bacterial diversity in pigeon pea after soaking in water

https://doi.org/10.22146/ijbiotech.94293

Yuni Sine(1), Donny Widianto(2), Yekti Asih Purwestri(3), Byong Hoon Lee(4), Widodo Widodo(5*)

(1) The Graduate School of Biotechnology, Universitas Gadjah Mada, Jl Teknika Utara Barek, Yogyakarta 55281, Indonesia
(2) The Graduate School of Biotechnology, Universitas Gadjah Mada, Jl Teknika Utara Barek, Yogyakarta 55281, Indonesia; Department of Microbiology, Faculty of Agriculture, Universitas Gadjah Mada, Jl Flora Bulaksumur, Yogyakarta 55281, Indonesia
(3) The Graduate School of Biotechnology, Universitas Gadjah Mada, Jl Teknika Utara Barek, Yogyakarta 55281, Indonesia; Laboratory of Biochemistry, Faculty of Biology, Universitas Gadjah Mada, Jl Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Departments of Microbiology/Immunology and Food Science, McGill University, Montreal, QC, Canada H3A 2B4
(5) The Graduate School of Biotechnology, Universitas Gadjah Mada, Jl Teknika Utara Barek, Yogyakarta 55281, Indonesia; Faculty of Animal Science, Universitas Gadjah Mada, Jl Fauna 3 Bulaksumur, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


This study investigated the diversity of bacterial community in the samples of pigeon pea (Cajanus cajan L. Millsp.) soaked in water for 12 h and 24 h. The detection of certain bacterial species in the samples that can be isolated and potentially be used as starter cultures in the development of pigeon pea‐based functional foods is the importance of this study. For bacterial identification, the V1–V9 regions on the 16S ribosomal RNA gene were amplified using 27F and 1492R primers under specific polymerase chain reaction conditions. Genomic DNA (130 ng) was sequenced on the R9.4 flow cell by Oxford Nanopore Technologies using a GridION sequencer. Library preparations were conducted using a Native Barcoding Kit 24 V14 (SQK‐NBD114.24). Primary data were acquired using MinKNOW version 22.05.7. A total of 13 bacterial families and 89 genera were identified in the pigeon pea sample soaked for 12 h, and 26 families and 90 genera were identified in the pigeon pea soaked for 24 h. The values of five diversity indices showed that the sample soaked in water for 24 h had richer bacterial abundance and diversity than for 12 h. Shannon and Simpson values revealed the higher bacterial diversity in the samples collected at 24 h than in those collected at 12 h. Species observation and abundance‐based coverage estimators (ACE) values demonstrated that the samples collected at 24 h harbored higher bac‐ terial richness than those collected at 12 h. Bacterial communities during soaking of the pigeon pea were dominated by the family Enterobacteriaceae and genus Enterobacter. The presence of bacterial genera like Lacticaseibacillus, Lentilactobacillus, and Secundilactobacillus is interesting because of their importance as starter cultures for fermented plant‐based milk products


Keywords


Bacterial diversity; Lactic acid bacteria; Metagenomic analysis; Pigeon pea; Soaking time

Full Text:

PDF


References

Abebe B. 2022. The dietary use of pigeon pea for human and animal diets. Sci. World J. 2022:4873008. doi:10.1155/2022/4873008.

Akande KE, Abubakar MM, Adegbola TA, Bogoro SE, Doma UD. 2010. Chemical evaluation of the nutritive quality of pigeon pea [Cajanus cajan (L.) Millsp.]. Int. J. Poult. Sci. 9(1):63–65. doi:10.3923/ijps.2010.63.65.

Bahram M, Anslan S, Hildebrand F, Bork P, Tedersoo L. 2019. Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment. Environ. Microbiol. Rep. 11(4):487–494. doi:10.1111/1758­2229.12684.

Balogun MA, Ahmed RN, Akintayo OA, Aruna TE, Omovbude MO, Shittu T. 2021. Microbial, chemical and sensory evaluation of pigeon pea condiment from wild and controlled fermentation. Ceylon J. Sci. 50(3):269–277. doi:10.4038/cjs.v50i3.7908.

Das S, Tamang JP. 2023. Metagenomics and metabolomics of Toddy, an Indian fermented date palm beverage. Food Res. Int. 172:113205. doi:10.1016/j.foodres.2023.113205.

De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. 2018. NanoPack: Visualizing and processing long­read sequencing data. Bioinformatics 34(15):2666–2669. doi:10.1093/bioinformatics/bty149.

Demarinis C, Verni M, Pinto L, Rizzello CG, Baruzzi F. 2022. Use of selected lactic acid bacteria for the fermentation of legume­based water extracts. Foods 11(21):3346. doi:10.3390/foods11213346.

Desai A, Small D, Mc Gill AE, Shah NP. 2002. Metabolism of Raffinose and Stachyose in reconstituted skim milk and of n­hexanal and pentanal in soymilk by Bifidobacteria. Biosci. Microflora 21(4):245–250. doi:10.12938/bifidus1996.21.245.

Erhardt MM, Oliveira WdC, Fröder H, Marques PH, Oliveira MBPP, Richards NSPdS. 2023. Lactic bacteria in artisanal cheese: Characterization through metagenomics. Fermentation 9(1):41. doi:10.3390/fermentation9010041.

Fang RS, Dong YC, Chen F, Chen QH. 2015. Bacterial diversity analysis during the fermentation processing of traditional Chinese yellow rice wine revealed by 16S rDNA 454 pyrosequencing. J. Food Sci. 80(10):2265–2271. doi:10.1111/1750­3841.13018.

Fredrikson M, Andlid T, Haikara A, Sandberg AS. 2002. Phytate degradation by micro­organisms in synthetic media and pea flour. J. Appl. Microbiol. 93(2):197– 204. doi:10.1046/j.1365­2672.2002.01676.x.

Gan RY, Li HB, Gunaratne A, Sui ZQ, Corke H. 2017. Effects of fermented edible seeds and their products on human health: Bioactive components and bioactivities. Compr. Rev. Food Sci. Food Saf. 16(3):489–531. doi:10.1111/1541­4337.12257.

Gu Q, Zhang C, Song D, Li P, Zhu X. 2015. Enhancing vitamin B12 content in soy­yogurt by Lactobacillus reuteri. Int. J. Food Microbiol. 206:56–59. doi:10.1016/j.ijfoodmicro.2015.04.033.

Gulitz A, Stadie J, Wenning M, Ehrmann MA, Vogel RF. 2011. The microbial diversity of water kefir. Int. J. Food Microbiol. 151(3):284–288. doi:10.1016/j.ijfoodmicro.2011.09.016.

Hao Y, Sun B. 2020. Analysis of bacterial diversity and biogenic amines content during fermentation of farmhouse sauce from Northeast China. Food Control 108:106861. doi:10.1016/j.foodcont.2019.106861.

Hickisch A, Beer R, Vogel RF, Toelstede S. 2016. Influence of lupin­based milk alternative heat treatment and exopolysaccharide­producing lactic acid bacteria on the physical characteristics of lupin­based yogurt alternatives. Food Res. Int. 84:180–188. doi:10.1016/j.foodres.2016.03.037.

Janda JM, Abbott SL. 2021. The changing face of the family enterobacteriaceae (Order: Enterobacterales): New members, taxonomic issues, geographic expansion, and new diseases and disease syndromes. Clin. Microbiol. Rev. 34(2):e00174–20. doi:10.1128/CMR.00174­20.

Kim D, Song L, Breitwieser FP, Salzberg SL. 2016. Centrifuge: Rapid and sensitive classification of metagenomic sequences. Genome Res. 26(12):1721–1729. doi:10.1101/gr.210641.116.

Kim M, Chun J. 2005. Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. Int. J. Food Microbiol. 103(1):91–96. doi:10.1016/j.ijfoodmicro.2004.11.030.

Li Z, Rui J, Li X, Li J, Dong L, Huang Q, Huang C, Wang Z, Li L, Xuan P, Tang Y, Chen F. 2017. Bacterial community succession and metabolite changes during doubanjiang­meju fermentation, a Chinese traditional fermented broad bean (Vicia faba L.) paste. Food Chem. 218:534–542. doi:10.1016/j.foodchem.2016.09.104.

Liu L, Chen X, Hao L, Zhang G, Jin Z, Li C, Yang Y, Rao J, Chen B. 2022. Traditional fermented soybean products: processing, flavor formation, nutritional and biological activities. Crit. Rev. Food Sci. Nutr. 62(7):1971–1989. doi:10.1080/10408398.2020.1848792.

Luo YY, Guo Y, Hu XY, Liu WH, Liu BQ, Yang J, Tu ZC, Huang YH. 2023. Flavor improvement of fermented soybean foods by co­fermentation with Bacillus velezensis and Lactiplantibacillus plantarum. LWT 186:115257. doi:10.1016/j.lwt.2023.115257.

Ma H, Wang L, Yu H, Wang W, Wu G, Qin G, Tan Z, Wang Y, Pang H. 2022. Protease­producing lactic acid bacteria with antibacterial properties and their potential use in soybean meal fermentation. Chem. Biol. Technol. Agric. 9(1):40. doi:10.1186/s40538­022­00303­ 5.

Maesen LVD. 1985. Cajanus DC. and Atylosia W. & A. (Leguminosae), volume 85­4. Wageningen: Wageningen Agricultural University.

Marsh AJ, O’Sullivan O, Hill C, Ross RP, Cotter PD. 2013. Sequencing­based analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources. PLoS One 8(7):69371. doi:10.1371/journal.pone.0069371.

Nur N, Meryandini A, Suhartono MT, Suwanto A. 2020. Lipolytic bacteria and the dynamics of flavor production in Indonesian tempeh. Biodiversitas 21(8):3818– 3825. doi:10.13057/biodiv/d210850.

Nurdini AL, Nuraida L, Suwanto A, Suliantari. 2015. Microbial growth dynamics during tempe fermentation in two different home industries. Int. Food Res. J. 22(4):1668–1674.

Nwosu JN, Ojukwu M, Ogueke CC, Ahaotu I, Owuamanam CI. 2013. The antinutritional properties and ease of dehulling on the proximate composition of pigeon pea (Cajanus cajan) as affected by malting. Int. J. Life Sci. 2(2):60–67.

Peng Q, Jiang S, Chen J, Ma C, Huo D, Shao Y, Zhang J. 2018. Unique microbial diversity and metabolic pathway features of fermented vegetables from Hainan, China. Front. Microbiol. 9:399. doi:10.3389/fmicb.2018.00399.

Prativi MBN, Astuti DI, Putri SP, Laviña WA, Fukusaki E, Aditiawati P. 2023. Metabolite changes in Indonesian tempe production from raw soybeans to over­fermented tempe. Metabolites 13(2):300. doi:10.3390/metabo13020300.

Qiao Y, Zhang K, Zhang Z, Zhang C, Sun Y, Feng Z. 2022. Fermented soybean foods: A review of their functional components, mechanism of action and factors influencing their health benefits. Food Res. Int. 158:111575. doi:10.1016/j.foodres.2022.111575.

Radita R, Suwanto A, Kurosawa N, Wahyudi AT, Rusmana I. 2018. Firmicutes is the predominant bacteria in tempeh. Int. Food Res. J. 25(6):2313–2320.

Ruiz de la Bastida A, Peirotén Á, Langa S, RodríguezMínguez E, Curiel JA, Arqués JL, Landete JM. 2023. Fermented soy beverages as vehicle of probiotic lactobacilli strains and source of bioactive isoflavones: A potential double functional effect. Heliyon 9(4):14991. doi:10.1016/j.heliyon.2023.e14991.

Sandberg AS. 2011. Developing functional ingredients: a case study of pea protein. Woodhead Publishing. p. 358–382. doi:10.1533/9780857092557.3.358.

Sheahan CM. 2012. Plant guide for sunn hemp (Crotalaria juncea). Soil Quality Agronomy Technical Note 10:8210.

Sirilun S, Sivamaruthi BS, Kesika P, Peerajan S, Chaiyasut C. 2017. Lactic acid bacteria mediated fermented soybean as a potent nutraceutical candidate. Asian Pac. J. Trop. Biomed. 7(10):930–936. doi:10.1016/j.apjtb.2017.09.007.

Tiwari BK, Gowen A, McKenna B. 2020. Pulse foods: Processing, quality and nutraceutical applications. Academic Press. p. 363. doi:10.1016/C2009­0­ 61252­6.

Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MT, Azam S, Fan G, Whaley AM, Farmer AD, Sheridan J, Iwata A, Tuteja R, Penmetsa RV, Wu W, Upadhyaya HD, Yang SP, Shah T, Saxena KB, Michael T, McCombie WR, Yang B, Zhang G, Yang H, Wang J, Spillane C, Cook DR, May GD, Xu X, Jackson SA. 2012. Draft genome sequence of pigeon pea (Cajanus cajan), an orphan legume crop of resource­poor farmers. Nat. Biotechnol. 30(1):83. doi:10.1038/nbt.2022.

Wick RR, Judd LM, Holt KE. 2019. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol. 20(1):129. doi:10.1186/s13059­019­1727­y.

Yang H, Zhang L, Xiao G, Feng J, Zhou H, Huang F. 2015. Changes in some nutritional components of soymilk during fermentation by the culinary and medicinal mushroom Grifola frondosa. LWT 62(1):468–473. doi:10.1016/j.lwt.2014.05.027.

Yarlina VP, Andoyo R, Djali M, Lani MN. 2022. Metagenomic analysis for indigenous microbial diversity in soaking process of making tempeh jack beans (Canavalia ensiformis). Curr. Res. Nutr. Food Sci. 10(2):620–632. doi:10.12944/CRNFSJ.10.2.18.

Yogeswara IBA, Kusumawati IGAW, Nursini NW, Mariyatun M, Rahayu ES, Haltrich D. 2023. Healthpromoting role of fermented pigeon pea (Cajanus cajan L (Mill)) milk enriched with γ­aminobutyric acid (GABA) using probiotic Lactiplantibacillus plantarum Dad­13. Fermentation 9(7):587. doi:10.3390/fermentation9070587.
Abebe B. 2022. The dietary use of pigeon pea for human and animal diets. Sci. World J. 2022:4873008. doi:10.1155/2022/4873008.

Akande KE, Abubakar MM, Adegbola TA, Bogoro SE, Doma UD. 2010. Chemical evaluation of the nutritive quality of pigeon pea [Cajanus cajan (L.) Millsp.]. Int. J. Poult. Sci. 9(1):63–65. doi:10.3923/ijps.2010.63.65.

Bahram M, Anslan S, Hildebrand F, Bork P, Tedersoo L. 2019. Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment. Environ. Microbiol. Rep. 11(4):487–494. doi:10.1111/1758­2229.12684.

Balogun MA, Ahmed RN, Akintayo OA, Aruna TE, Omovbude MO, Shittu T. 2021. Microbial, chemical and sensory evaluation of pigeon pea condiment from wild and controlled fermentation. Ceylon J. Sci. 50(3):269–277. doi:10.4038/cjs.v50i3.7908.

Das S, Tamang JP. 2023. Metagenomics and

metabolomics of Toddy, an Indian fermented date palm beverage. Food Res. Int. 172:113205. doi:10.1016/j.foodres.2023.113205.

De Coster W, D’Hert S, Schultz DT, Cruts M,

Van Broeckhoven C. 2018. NanoPack: Visualizing and processing long­read sequencing data. Bioinformatics 34(15):2666–2669.doi:10.1093/bioinformatics/bty149.

Demarinis C, Verni M, Pinto L, Rizzello CG, Baruzzi F. 2022. Use of selected lactic acid bacteria for the fermentation of legume­based water extracts. Foods 11(21):3346. doi:10.3390/foods11213346.

Desai A, Small D, Mc Gill AE, Shah NP. 2002. Metabolism of Raffinose and Stachyose in reconstituted skim milk and of n­hexanal and pentanal in soymilk by Bifidobacteria. Biosci. Microflora 21(4):245–250. doi:10.12938/bifidus1996.21.245.

Erhardt MM, Oliveira WdC, Fröder H, Marques PH, Oliveira MBPP, Richards NSPdS. 2023. Lactic bacteria in artisanal cheese: Characterization

through metagenomics. Fermentation 9(1):41.

doi:10.3390/fermentation9010041.

Fang RS, Dong YC, Chen F, Chen QH. 2015. Bacterial diversity analysis during the fermentation processing of traditional Chinese yellow rice wine revealed by 16S rDNA 454 pyrosequencing. J. Food Sci. 80(10):2265–2271. doi:10.1111/1750­3841.13018.

Fredrikson M, Andlid T, Haikara A, Sandberg AS. 2002. Phytate degradation by micro­organisms in synthetic media and pea flour. J. Appl. Microbiol. 93(2):197– 204. doi:10.1046/j.1365­2672.2002.01676.x.

Gan RY, Li HB, Gunaratne A, Sui ZQ, Corke H. 2017. Effects of fermented edible seeds and their products on human health: Bioactive components and bioactivities. Compr. Rev. Food Sci. Food Saf. 16(3):489–531. doi:10.1111/1541­4337.12257.

Gu Q, Zhang C, Song D, Li P, Zhu X. 2015. Enhancing vitamin B12 content in soy­yogurt by Lactobacillus reuteri. Int. J. Food Microbiol. 206:56–59. doi:10.1016/j.ijfoodmicro.2015.04.033.

Gulitz A, Stadie J, Wenning M, Ehrmann MA, Vogel RF. 2011. The microbial diversity of water kefir. Int. J. Food Microbiol. 151(3):284–288. doi:10.1016/j.ijfoodmicro.2011.09.016.

Hao Y, Sun B. 2020. Analysis of bacterial diversity and biogenic amines content during fermentation of farmhouse sauce from Northeast China. Food Control 108:106861. doi:10.1016/j.foodcont.2019.106861.

Hickisch A, Beer R, Vogel RF, Toelstede S. 2016. Influence of lupin­based milk alternative heat treatment and exopolysaccharide­producing lactic acid bacteria on the physical characteristics of lupin­based yogurt alternatives. Food Res. Int. 84:180–188. doi:10.1016/j.foodres.2016.03.037.

Janda JM, Abbott SL. 2021. The changing face of the family enterobacteriaceae (Order: Enterobacterales): New members, taxonomic issues, geographic expansion, and new diseases and disease syndromes. Clin. Microbiol. Rev. 34(2):e00174–20. doi:10.1128/CMR.00174­20.

Kim D, Song L, Breitwieser FP, Salzberg SL. 2016. Centrifuge: Rapid and sensitive classification of metagenomic sequences. Genome Res. 26(12):1721–1729. doi:10.1101/gr.210641.116.

Kim M, Chun J. 2005. Bacterial community structure in kimchi, a Korean fermented vegetablefood, as revealed by 16S rRNA gene analysis. Int. J. Food Microbiol. 103(1):91–96.doi:10.1016/j.ijfoodmicro.2004.11.030.

Li Z, Rui J, Li X, Li J, Dong L, Huang Q, Huang C, Wang Z, Li L, Xuan P, Tang Y, Chen F. 2017. Bacterial community succession and metabolite changes during doubanjiang­meju fermentation, a Chinese traditional fermented broad bean (Vicia faba L.) paste. Food Chem. 218:534–542.doi:10.1016/j.foodchem.2016.09.104.Liu L, Chen X, Hao L, Zhang G, Jin Z, Li C, YangY, Rao J, Chen B. 2022. Traditional fermented soybean products: processing, flavor formation, nutritional and biological activities. Crit. Rev. Food Sci. Nutr. 62(7):1971–1989. doi:10.1080/10408398.2020.1848792.

Luo YY, Guo Y, Hu XY, Liu WH, Liu BQ, Yang J, Tu ZC, Huang YH. 2023. Flavor improvement of fermented soybean foods by co­fermentation with Bacillus velezensis and Lactiplantibacillus plantarum. LWT 186:115257. doi:10.1016/j.lwt.2023.115257.

Ma H, Wang L, Yu H, Wang W, Wu G, Qin G, Tan Z, Wang Y, Pang H. 2022. Protease­producing lactic acid bacteria with antibacterial properties and their potential use in soybean meal fermentation. Chem. Biol. Technol. Agric. 9(1):40. doi:10.1186/s40538­022­00303­ 5.

Maesen LVD. 1985. Cajanus DC. and Atylosia W. & A. (Leguminosae), volume 85­4. Wageningen: Wa­



DOI: https://doi.org/10.22146/ijbiotech.94293

Article Metrics

Abstract views : 771 | views : 448

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.