Development of nanocomplex mimic‐hsa‐miR‐143‐3p loaded exosome (exo‐miR) to inhibit viability, migration and proliferation of triple‐negative breast cancer

https://doi.org/10.22146/ijbiotech.92817

Fita Nilasari(1), Sofia Mubarika Haryana(2*), Dwi Aris Agung Nugrahaningsih(3), Pamungkas Bagus Satriyo(4)

(1) Study Program of Master in Biotechnology, Graduate School, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(2) Department of Histology and Cellular Biology, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(3) Department of Pharmacology and Therapy, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(4) Department of Pharmacology and Therapy, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


Breast cancer represents the highest number of cancer cases in Indonesia, with triple‐negative breast cancer (TNBC) being a common subtype (10–15%). MicroRNAs play a role in cancer epigenetics and contributing as core factors to the disease. The expression of miR‐143‐3p have been found to be lower in breast cancer samples from Yogyakarta and Central Java. It is known that miR‐143‐3p functions as a tumor suppressor in breast cancer, and its overexpression corresponds with an increased survival rate. The structure of miRNA is quickly degraded, an enhanced delivery system for miRNA is required. Exosomes are indeed emerging as natural delivery agent. A new approach represents that exosomes will be transfected with mimic‐hsa‐miR‐143‐3p yield an exo‐miR. The research aimed to examine how exo‐miR affects viability, migration, and proliferation using 4T1 cell line. The Exo‐Fect‐based method was used to transfect mimic‐hsa‐miR‐143‐3p into exosomes. The MTT assay, wound healing assay, and colony formation assay were used as functional assay. The MTT assay revealed that 7.5 µL/ 250,000 particles exo‐miR obtained a lower percentage of cell viability (58%) than the control (99.7%). The wound healing assay showed that transfection of 37.5 µL/ 1,250,000 particles exo‐miR was able to suppress migration by the percentage of wound closure (67%) compared to the control (100%). Exo‐miR also had a significant (p < 0.001) effect on colony‐forming abilities, as shown by fewer colonies (32) compared to the control (132). This findings demonstrated that exo‐miR represents a promising targeted approach in cancer therapy.

Keywords


Exosome; Migration; mimic‐hsa‐miR‐143‐3p; Proliferation; TNBC; Viability

Full Text:

PDF


References

Agung Nugrahaningsih DA, Purwadi P, Sarifin I, Bachtiar I, Sunarto S, Ubaidillah U, Larasati I, Satriyo PB, Setiasari DW, Hasanah MN, At­thobari J, Mubarika S. 2023. In vivo immunomodulatory effect and safety of MSC­derived secretome. F1000Research 12:421. doi:10.12688/f1000research.131487.1.

Bhome R, Del Vecchio F, Lee GH, Bullock MD, Primrose JN, Sayan AE, Mirnezami AH. 2018. Exosomal microRNAs (exomiRs): Small molecules with a big role in cancer. Cancer Lett. 420:228–235. doi:10.1016/j.canlet.2018.02.002.

Dasgupta I, Chatterjee A. 2021. Recent advances in miRNA delivery systems. Methods Protoc. 4(1):10. doi:10.3390/mps4010010.

de Abreu RC, Ramos CV, Becher C, Lino M, Jesus C, da Costa Martins PA, Martins PA, Moreno MJ, Fernandes H, Ferreira L. 2021. Exogenous loading of miRNAs into small extracellular vesicles. J. Extracell. Vesicles 10(10):e12111. doi:10.1002/jev2.12111.

Felice DL, Sun J, Liu RH. 2009. A modified methylene blue assay for accurate cell counting. J. Funct. Foods 1(1):109–118. doi:10.1016/j.jff.2008.09.014.

Global Cancer Observatory. 2020. Global Cancer Observatory 2020. Lyon: International Agency for Research on Cancer (IARC). URL https://gco.iarc.fr/en.

Guo M, Li R, Yang L, Zhu Q, Han M, Chen Z, Ruan F, Yuan Y, Liu Z, Huang B, Bai M, Wang H, Zhang C, Tang C. 2021. Evaluation of exosomal miRNAs as potential diagnostic biomarkers for acute myocardial infarction using next­generation sequencing. Ann. Transl. Med. 9(3):219. doi:10.21037/atm­20­2337.

Hanahan D. 2022. Hallmarks of cancer: New dimensions. Cancer Discov. 12(1):31–46. doi:10.1158/2159­ 8290.CD­21­1059.

Hermansyah D, Rahayu Y, Azrah A, Pricilia G, Sufida S, Rifsal D, Simarmata A. 2021. Triplenegative breast cancer clinicopathology: A singlecenter experience. Indones. J. Cancer 15(3):125–128. doi:10.33371/ijoc.v15i3.791.

Heusermann W, Hean J, Trojer D, Steib E, von Bueren S, Graff­Meyer A, Genoud C, Martin K, Pizzato N, Voshol J, Morrissey DV, Andaloussi SE, Wood MJ, Meisner­Kober NC. 2016. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. J. Cell Biol. 213(2):173–184. doi:10.1083/jcb.201506084.

Jonkman JE, Cathcart JA, Xu F, Bartolini ME, Amon JE, Stevens KM, Colarusso P. 2014. An introduction to the wound healing assay using livecell microscopy. Cell Adhes. Migr. 8(5):440–451. doi:10.4161/cam.36224.

Kadriyan H, Prasedya ES, Pieter NAL, Gaffar M, Akil A, Bukhari A, Budu B, Zainuddin AA, Masadah R, Rhomdoni AC, Punagi AQ. 2021. NPC­exosome carry wild and mutant­type p53 among nasopharyngeal cancer patients. Indones. Biomed. J. 13(4):403– 408. doi:10.18585/INABJ.V13I4.1718.

Kim H, Jang H, Cho H, Choi J, Hwang KY, Choi Y, Kim SH, Yang Y. 2021. Recent advances in exosomebased drug delivery for cancer therapy. Cancers (Basel). 13(17):4435. doi:10.3390/cancers13174435.

Klinge CM. 2018. Non­coding RNAs in breast cancer: Intracellular and intercellular communication. Noncoding RNA 4(4):40. doi:10.3390/ncrna4040040.

Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. 2023. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct. Target. Ther. 8:39. doi:10.1038/s41392­ 022­01298­z.

Mehanna J, Haddad FG, Eid R, Lambertini M, Kourie HR. 2019. Triple­negative breast cancer: Current perspective on the evolving therapeutic landscape. Int. J. Womens. Health 11:431–437. doi:10.2147/IJWH.S178349.

Radosa JC, Eaton A, Stempel M, Khander A, Liedtke C, Solomayer EF, Karsten M, Pilewskie M, Morrow M, King TA. 2017. Evaluation of local and distant recurrence patterns in patients with triple­negative breast cancer according to age. Ann. Surg. Oncol. 24(3):698–704. doi:10.1245/s10434­016­5631­3.

Rayson D, Payne JI, Michael JC, Tsuruda KM, Abdolell M, Barnes PJ. 2018. Impact of detection method and age on survival outcomes in triplenegative breast cancer: A population­based cohort analysis. Clin. Breast Cancer 18(5):e955–e960. doi:10.1016/j.clbc.2018.04.013.

Rundén­Pran E, Mariussen E, El Yamani N, Elje E, Longhin EM, Dusinska M. 2022. The colony forming efficiency assay for toxicity testing of nanomaterials—Modifications for higher­throughput. Front. Toxicol. 4:983316. doi:10.3389/ftox.2022.983316.

Samanta S, Rajasingh S, Drosos N, Zhou Z, Dawn B, Rajasingh J. 2018. Exosomes: New molecular targets of diseases. Acta Pharmacol. Sin. 39(4):501–513. doi:10.1038/aps.2017.162.

Satriyo P, Yeh CT, Chen JH, Aryandono T, Haryana S, Chao TY. 2020. Dual therapeutic strategy targeting tumor cells and tumor microenvironment in triple­negative breast cancer. J. Cancer Res. Pract. 7(4):139–148. doi:10.4103/jcrp.jcrp_13_20.

Stockert JC, Horobin RW, Colombo LL, Blázquez­Castro A. 2018. Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem. 120(3):159–167. doi:10.1016/j.acthis.2018.02.005.

Vallabhaneni KC, Penfornis P, Dhule S, Guillonneau F, Adams KV, Yuan Mo Y, Xu R, Liu Y, Watabe K, Vemuri MC, Pochampally R. 2014. Extracellular vesicles from bone marrow mesenchymal stem/ stromal cells transport tumor regulatory microRNA, proteins, and metabolites. Oncotarget 6:4953–4967.

Vestad B, Llorente A, Neurauter A, Phuyal S, Kierulf B, Kierulf P, Skotland T, Sandvig K, Haug KBF, Øvstebø R. 2017. Size and concentration analyses of extracellular vesicles by nanoparticle tracking analysis: a variation study. J. Extracell. Vesicles 6(1):1344087. doi:10.1080/20013078.2017.1344087.

Wang S, Lu J, You Q, Huang H, Chen Y, Liu K. 2016. The mTOR/AP­1/VEGF signaling pathway regulates vascular endothelial cell growth. Oncotarget 7(33):53269–53276. doi:10.18632/oncotarget.10756.

Xia C, Yang Y, Kong F, Kong Q, Shan C. 2018. MiR­ 143­3p inhibits the proliferation, cell migration and invasion of human breast cancer cells by modulating the expression of MAPK7. Biochimie 147:98–104. doi:10.1016/j.biochi.2018.01.003.

Ysrafil Y, Astuti I, Anwar SL, Martien R, Sumadi FAN, Wardhana T, Haryana SM. 2020. MicroRNA­155­ 5p diminishes in vitro ovarian cancer cell viability by targeting HIF1α expression. Adv. Pharm. Bull. 10(4):630–637. doi:10.34172/apb.2020.076.

Zhang D, Lee H, Zhu Z, Minhas JK, Jin Y. 2016. Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. Am. J. Physiol. ­ Lung Cell. Mol. Physiol. 312(1):L110– L121. doi:10.1152/ajplung.00423.2016.

Agung Nugrahaningsih DA, Purwadi P, Sarifin I, Bachtiar I, Sunarto S, Ubaidillah U, Larasati I, Satriyo PB, Setiasari DW, Hasanah MN, At­thobari J, Mubarika S. 2023. In vivo immunomodulatory effect and safety of MSC­derived secretome. F1000Research 12:421. doi:10.12688/f1000research.131487.1.

Bhome R, Del Vecchio F, Lee GH, Bullock MD, Primrose JN, Sayan AE, Mirnezami AH. 2018. Exosomal microRNAs (exomiRs): Small molecules with a big role in cancer. Cancer Lett. 420:228–235. doi:10.1016/j.canlet.2018.02.002.

Dasgupta I, Chatterjee A. 2021. Recent advances in miRNA delivery systems. Methods Protoc. 4(1):10. doi:10.3390/mps4010010.

de Abreu RC, Ramos CV, Becher C, Lino M, Jesus C, da Costa Martins PA, Martins PA, Moreno MJ, Fernandes H, Ferreira L. 2021. Exogenous loading of miRNAs into small extracellular vesicles. J. Extracell. Vesicles 10(10):e12111. doi:10.1002/jev2.12111.

Felice DL, Sun J, Liu RH. 2009. A modified methylene blue assay for accurate cell counting. J. Funct. Foods 1(1):109–118. doi:10.1016/j.jff.2008.09.014.

Global Cancer Observatory. 2020. Global Cancer Observatory 2020. Lyon: International Agency for Research on Cancer (IARC). URL https://gco.iarc.fr/en.

Guo M, Li R, Yang L, Zhu Q, Han M, Chen Z, Ruan F, Yuan Y, Liu Z, Huang B, Bai M, Wang H, Zhang C, Tang C. 2021. Evaluation of exosomal miRNAs as potential diagnostic biomarkers for acute myocardial infarction using next­generation sequencing. Ann. Transl. Med. 9(3):219. doi:10.21037/atm­20­2337.

Hanahan D. 2022. Hallmarks of cancer: New dimensions. Cancer Discov. 12(1):31–46. doi:10.1158/2159­ 8290.CD­21­1059.

Hermansyah D, Rahayu Y, Azrah A, Pricilia G, Sufida S, Rifsal D, Simarmata A. 2021. Triplenegative breast cancer clinicopathology: A singlecenter experience. Indones. J. Cancer 15(3):125–128. doi:10.33371/ijoc.v15i3.791.

Heusermann W, Hean J, Trojer D, Steib E, von Bueren S, Graff­Meyer A, Genoud C, Martin K, Pizzato N, Voshol J, Morrissey DV, Andaloussi SE, Wood MJ, Meisner­Kober NC. 2016. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. J. Cell Biol. 213(2):173–184. doi:10.1083/jcb.201506084.

Jonkman JE, Cathcart JA, Xu F, Bartolini ME, Amon JE, Stevens KM, Colarusso P. 2014. An introduction to the wound healing assay using livecell microscopy. Cell Adhes. Migr. 8(5):440–451. doi:10.4161/cam.36224.



DOI: https://doi.org/10.22146/ijbiotech.92817

Article Metrics

Abstract views : 395 | views : 280

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.