Identification of medium‐grain rice based on GS3, a gene linked to rice grain size

https://doi.org/10.22146/ijbiotech.89421

Bui Phuo Tam(1), Pham Thi Be Tu(2*), Nguyen Thi Pha(3)

(1) PhD student of Can Tho University, Can Tho City 94000, Vietnam; Genetics and Rice Breeding Department, Loc Troi Agricultural Research Institute, An Giang province 90000, Vietnam
(2) College of Agriculture, Can Tho University, Can Tho City 94000, Vietnam
(3) Institute of Food and Biotechnology, Can Tho University, Can Tho City 94000, Vietnam
(*) Corresponding Author

Abstract


Previous studies have used molecular markers associated with the GS3 gene to differentiate between short and long rice. However, there are three classifications of grain size: long, short, and medium. The identification of medium‐grain rice using these markers linked to the GS3 gene is yet to be confirmed. Hence, this study aimed to identify medium‐grain rice through phenotyping and genotyping. Grain characteristics including grain length (GL), grain width (GW), and the length‐to‐width ratio (GL/GW) were measured using SmartGrain software. The genotype was then amplified with the GS3 gene‐linked DRR‐GL (double round‐robin for grain length) molecular marker. The results revealed that medium‐grain rice, as identified by the DRR‐GL marker, exhibited DNA bands at the position of 150 bp. These bands differed from those observed in long‐grain rice, but they were consistent with those found in short‐grain rice. The genotypic results further indicated that PCR products obtained with the DRR‐GL marker in medium‐grain rice accounted for 86.8% of the phenotypic variation in grain size. This study provides fundamental genetic insights into the identification of medium‐grain rice and contributes to optimizing effects on rice breeding related to grain size.


Keywords


Grain size; GS3 gene; Medium‐grain rice; PCR (polymerase chain reaction); SmartGrain software

Full Text:

PDF


References

Badi O. 2013. In : Rice post­harvest technology training program. Japan International Cooperation Agency. [accessed April 01, 2021]. URL https://www.jica.go.jp/project/english/sudan/001/m aterials/c8h0vm00007vrgs5­att/rice_quality_en.pdf.

French A, Ubeda­Tomás S, Holman TJ, Bennett MJ, Pridmore T. 2009. High­throughput quantification of root growth using a novel image­analysis tool. Plant Physiol. 150(4):1784–1795. doi:10.1104/pp.109.140558.

Gasparis S, Miłoszewski MM. 2023. Genetic basis of grain size and weight in rice, wheat, and barley. Int. J. Mol. Sci. 24(23):16921. doi:10.3390/ijms242316921.

Hori K, Sun J. 2022. Rice grain size and quality. Rice 15(1):33. doi:10.1186/s12284­022­00579­z. Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q. 2015. A rare allele of GS2 enhances grain size and grain yield in rice. Mol. Plant 8(10):1455–1465. doi:10.1016/j.molp.2015.07.002.

Huang J, Gao L, Luo S, Liu K, Qing D, Pan Y, Dai G, Deng G, Zhu C. 2022. The genetic editing of GS3 via CRISPR/Cas9 accelerates the breeding of three­line hybrid rice with superior yield and grain quality. Mol. Breed. 42(4):22. doi:10.1007/s11032­022­01290­z.

Huang R, Jiang L, Zheng J, Wang T, Wang H, Huang Y, Hong Z. 2013. Genetic bases of rice grain shape: So many genes, so little known. Trends Plant Sci. 18(4):218–226. doi:10.1016/j.tplants.2012.11.001.

International Rice Research Institute. 2014. Standard Evaluation System for Rice (SES). 5th ed. Technical report, International Rice Research Institute, Los Banos, Philippines.

Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu BI, Onishi A, Miyagawa H, Katoh E. 2013. Loss of function of the IAA­glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat. Genet. 45:707– 711. doi:10.1038/ng.2612.

Jennings PR, Coman WR, Kauman HE. 1979. Rice improvement. International Rice Research Institute, Los Banos, Philippines. Jiang H, Zhang A, Liu X, Chen J. 2022. Grain size associated genes and the molecular regulatory mechanism in rice. Int. J. Mol. Sci. 23(6):3169. doi:10.3390/ijms23063169.

Kim B, Kim DG, Lee G, Seo J, Choi IY, Choi BS, Yang TJ, Kim KS, Lee J, Chin JH, Koh HJ. 2014. Defining the genome structure of ‘Tongil’ rice, an important cultivar in the Korean “Green Revolution”. Rice 7(1):22. doi:10.1186/s12284­014­0022­5.

Li X, Wu L, Geng X, Xia X, Wang X, Xu Z, Xu Q. 2018. Deciphering the environmental impacts on rice quality for different rice cultivated areas. Rice 11:7. doi:10.1186/s12284­018­0198­1.

Liu Q, Han R, Wu K, Zhang J, Ye Y, Wang S, Chen J, PanY, Li Q, Xu X, Zhou J, Tao D, Wu Y, Fu X. 2018. G­protein βγ subunits determine grain size through interaction with MADS­domain transcription factors in rice. Nat. Commun. 9:852. doi:10.1038/s41467­ 018­03047­9.

Megersa A, Seo J, Chin JH, Kim B, Koh HJ. 2016. Characterization of selected rice varieties adapted in Africa. Plant Breed. Biotechnol. 4(3):297–305. doi:10.9787/pbb.2016.4.3.297.

Murray MG, Thompson WF. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8(19):4321–4325. doi:10.1093/nar/8.19.4321.

Ngangkham U, Samantaray S, Yadav MK, Kumar A, Chidambaranathan P, Katara JL. 2018. Effect of multiple allelic combinations of genes on regulating grain size in rice. PLoS One 13(1):e0190684. doi:10.1371/journal.pone.0190684.

Ramkumar G, Sivaranjani AK, Pandey MK, Sakthivel K, Shobha Rani N, Sudarshan I, Prasad GS, Neeraja CN, Sundaram RM, Viraktamath BC, Madhav MS. 2010. Development of a PCR­based SNP marker system for effective selection of kernel length and kernel elongation in rice. Mol. Breed. 26(4):735–740. doi:10.1007/s11032­010­9492­3.

Singh DP, Singh AK, Singh A. 2021. Chapter 5 ­ Plant genetic resources. USA: Academic Press.

Sun K, Li D, Xia A, Zhao H, Wen Q, Jia S, Wang J, Yang G, Zhou D, Huang C, Wang H, Chen Z, Guo T. 2022. Targeted identification of rice grainassociated gene allelic variation through mutation induction, targeted sequencing, and whole genome sequencing combined with a mixed­samples strategy. Rice 15(1):57. doi:10.1186/s12284­022­00603­2.

Tanabata T, Shibaya T, Hori K, Ebana K, Yano M. 2012. SmartGrain: High­throughput phenotyping software for measuring seed shape through image analysis. Plant Physiol. 160(4):1871–1880. doi:10.1104/pp.112.205120.

Wailes E, Chavez E. 2015. International Rice Outlook, Baseline Projections 2014­2024 (Staff papers 199846). Technical report, University of Arkansas, USA.

Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X. 2015a. The OsSPL16­GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat. Genet. 47(8):949–954. doi:10.1038/ng.3352.

Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q. 2015b. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat. Genet. 47(8):944– 948. doi:10.1038/ng.3346.

Xie X, Li S, Liu H, Xu Q, Tang H, Mu Y, Deng M, Jiang Q, Chen G, Qi P, Li W, Pu Z, Ahsan Habib, Wei Y, Zheng Y, Lan X, Ma J. 2022. Identification and validation of a major QTL for kernel length in bread wheat based on two F3 biparental populations. BMC Genomics 23:386. doi:10.1186/s12864­022­08608­3.

Xing Y, Zhang Q. 2010. Genetic and molecular bases of rice yield. Annu. Rev. Plant Biol. 61:421–442. doi:10.1146/annurev­arplant­042809­112209.

Xue D, Qian Q, Teng S. 2014. Identification and utilization of elite genes from elite germplasms for yield improvement. InTechOpen. doi:10.5772/56390.

Yuyu C, Aike Z, Pao X, Xiaoxia W, Yongrun C, Beifang W, Yue Z, Liaqat S, Shihua C, Liyong C, Yingxin Z. 2020. Effects of GS3 and GL3.1 for grain size editing by CRISPR/Cas9 in rice. Rice Sci. 27(5):405–413. doi:10.1016/j.rsci.2019.12.010.

Zhao DS, Li QF, Zhang CQ, Zhang C, Yang QQ, Pan LX, Ren XY, Lu J, Gu MH, Liu QQ. 2018. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat. Commun. 9:1240. doi:10.1038/s41467­018­03616­y.

Zhou H, Li P, Xie W, Hussain S, Li Y, Xia D, Zhao H, Sun S, Chen J, Ye H, Hou J, Zhao D, Gao G, Zhang Q, Wang G, Lian X, Xiao J, Yu S, Li X, He Y. 2017. Genome­wide association analyses reveal the genetic basis of stigma exsertion in rice. Mol. Plant 10(4):634–644. doi:10.1016/j.molp.2017.01.001.

Zuo J, Li J. 2014. Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu. Rev. Genet. 48:99–118. doi:10.1146/annurev­genet­ 120213­092138.



DOI: https://doi.org/10.22146/ijbiotech.89421

Article Metrics

Abstract views : 1014 | views : 617

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.