Specific PCR primers for rapid detection of five rat and mouse species in Java, Indonesia

https://doi.org/10.22146/ijbiotech.89125

Pramana Yuda(1), Stephanie Rani Tiurma Siregar(2), Sena Adi Subrata(3*)

(1) Faculty of Biotechnology, University of Atma Jaya Yogyakarta. Yogyakarta 55281, Indonesia
(2) Faculty of Biotechnology, University of Atma Jaya Yogyakarta. Yogyakarta 55281, Indonesia
(3) Faculty of Forestry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


Identifying rat and mouse species quickly, affordably, and accurately is crucial for effective population management, as well as for eradication or conservation purposes. However, the sheer diversity of these species poses a challenge. To address this, a molecular approach has been developed, involving the amplification of a short genetic marker from materials commonly left by the animal, such as hairs and feces. Recent available PCR primers were not suitable for the surveillance of large sample sizes. As a solution, this study designed and validated a PCR primer set capable of detecting five species of rats and mice (Mus musculus, Rattus tanezumi, Bandicota indica, Rattus tiomanicus, and Rattus argentiventer) commonly found in Java, Indonesia. The specific primers were derived from the cytochrome c oxidase subunit 1 (COI) gene, designed using the SP‐Designer V7.0 application, and validated using both in silico and in vitro methods. The validation results demonstrated that all five pairs of primers were highly specific, generated correct amplicons, and successfully detected the five distinct species present in a Javan mongoose feces sample. These findings are significantly important as they enable the effective detection of rat and mouse species and potentially provide valuable ecological insights from the field.


Keywords


Cytochrome c oxidase subunit 1 (COI); DNA; Mouse; Non‐invasive; Rodents

Full Text:

PDF


References

Bohmann K, Evans A, Gilbert MTP, Carvalho GR, Creer S, Knapp M, Yu DW, de Bruyn M. 2014. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29(6):358–367. doi:10.1016/j.tree.2014.04.003.

Browett SS, O’Meara DB, McDevitt AD. 2020. Genetic tools in the management of invasive mammals: Recent trends and future perspectives. Mamm. Rev. 50(2):200–210. doi:10.1111/mam.12189.

Chen X, Luo Y, Wang R, Du FK. 2023. The distinct fruit size and physical defense promote divergent secondary seed dispersal strategies of three oak species. For. Ecol. Manage. 529(120642):1–7. doi:10.1016/j.foreco.2022.120642.

D’Elía G, Fabre PH, Lessa EP. 2019. Rodent systematics in an age of discovery: Recent advances and prospects. J. Mammal. 100(3):852–871. doi:10.1093/jmammal/gyy179.

Elliott TF, Townley S, Johnstone C, Meek P, Gynther I, Vernes K. 2020. The endangered Hastings River mouse (Pseudomys oralis) as a disperser of ectomycorrhizal fungi in eastern Australia. Mycologia 112(6):1075–1085. doi:10.1080/00275514.2020.1777383.

Hall T. 1999. BIOEDIT: a user­friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp Ser. 41:95–98.

Hebert PD, Cywinska A, Ball SL, DeWaard JR. 2003. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 270(1512):313–321. doi:10.1098/rspb.2002.2218.

Herawati NA, Sudarmaji. 2021. Diversity of rodent species and its potency as the vector for transmitting rodent borne parasitic disease in households. In: BIO Web Conf., volume 33. p. 07004. doi:10.1051/bioconf/20213307004.

John A. 2014. Rodent outbreaks and rice pre­harvest losses in Southeast Asia. Food Secur. 6(2):249–260. doi:10.1007/s12571­014­0338­4.

Korbie DJ, Mattick JS. 2008. Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat. Protoc. 3(9):1452–1456. doi:10.1038/nprot.2008.133.

Lakshminarayanan RR, Shanmugam A, Govindaraju A. 2015. Sequencing of COI gene in four rodent pests for species identification. DNA Barcodes 3(1):1–4. doi:10.1515/dna­2015­0001.

Linacre AM, Tobe SS. 2013. Wildlife DNA Analysis: Applications in Forensic Science. London: John Wiley & Sons, Ltd. doi:10.1002/9781118496411.

Marbawati D, Harilsmanto H, Pramestuti N. 2016. Characteristic of rats as reservoirs of leptospirosis. Kes Mas J. Fak. Kesehat. Masy. 10(1):49–54.

Martín I, García T, Fajardo V, Rojas M, Hernández PE, González I, Martín R. 2007. Technical Note: Detection of cat, dog, and rat or mouse tissues in food and animal feed using species­specific polymerase chain reaction. J. Anim. Sci. 85(10):2734–2739. doi:10.2527/jas.2007­0048.

Maryanto I, Maharadatunkamsi D, Setiawan Achmadi A, Wiantoro S, Sulistyadi E, Yoneda M, Suyanto A, Sugardjito J. 2019. Checklist of the mammals of Indonesia. Bogor: Research Center for Biology – Indonesian Institute of Sciences.

Moezi P, Kargar M, Doosti A, Khoshneviszadeh M. 2019. Multiplex touchdown PCR assay to enhance specificity and sensitivity for concurrent detection of four foodborne pathogens in raw milk. J. Appl. Microbiol. 127(1):262–273. doi:10.1111/jam.14285.

Mori C, Matsumura S. 2021. Current issues for mammalian species identification in forensic science: A review. Int. J. Legal Med. 135(1):3–12. doi:10.1007/s00414­020­02341­w.

Musser GG, Carleton MD. 2005. Order rodentia. In: Wilson DE and Reeder DM, editors. Mammal species of the world: a taxonomic and geographic reference. Baltimore: The Johns Hopkins University Press.

Pfunder M, Holzgang O, Frey JE. 2004. Development of microarray­based diagnostics of voles and shrews for use in biodiversity monitoring studies, and evaluation of mitochondrial cytochrome oxidase I vs. cytochrome b as genetic markers. Mol. Ecol. 13(5):1277–1288. doi:10.1111/j.1365­ 294X.2004.02126.x.

Russell JC, Holmes ND. 2015. Tropical island conservation: Rat eradication for species recovery. Biol. Conserv. 185:1–7. doi:10.1016/j.biocon.2015.01.009.

Subrata SA, Siregar SR, André A, Michaux JR. 2021. Identifying prey of the Javan mongoose (Urva javanica) in Java from fecal samples using nextgeneration sequencing. Mamm. Biol. 101(1):63–70. doi:10.1007/s42991­020­00086­y.

Taberlet P, Bonin A, Zinger L, Coissac E. 2018. Environmental DNA: For biodiversity research and monitoring. Oxford: Oxford University Press. doi:10.1093/oso/9780198767220.001.0001.

Tamura K, Peterson D, Peterson N, Stecher G, NeiM, Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28(10):2731–2739. doi:10.1093/molbev/msr121.

Villard P, Malausa T. 2013. SP­Designer: A user­friendly program for designing species­specific primer pairs from DNA sequence alignments. Mol. Ecol. Resour. 13(4):755–758. doi:10.1111/1755­0998.12116.

Xiong M, Wang D, Bu H, Shao X, Zhang D, Li S, Wang R, Yao M. 2017. Molecular dietary analysis of two sympatric felids in the Mountains of Southwest China biodiversity hotspot and conservation implications. Sci. Rep. 7:1–12. doi:10.1038/srep41909.



DOI: https://doi.org/10.22146/ijbiotech.89125

Article Metrics

Abstract views : 1186 | views : 1057

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.