sgRNA design and in vitro nucleolytic analysis of the Cas9‐RNP complex for transgene‐free genome editing of the eIF4E1 gene from Capsicum an‐ nuum L.

https://doi.org/10.22146/ijbiotech.86778

Josefanny Tham(1), Alfred Patisenah(2), Tommy Octavianus Soetrisno Tjia(3), Santiago Signorelli(4), Intan Taufik(5), Karlia Meitha(6*)

(1) School of Life Sciences and Technology, Institut Teknologi Bandung, West Java 40132, Indonesia
(2) School of Life Sciences and Technology, Institut Teknologi Bandung, West Java 40132, Indonesia
(3) School of Life Science and Technology, Tokyo Institute of Technology, Japan 152-8550
(4) Departamento de Biología Vegetal, Universidad de la República, Uruguay 11200
(5) School of Life Sciences and Technology, Institut Teknologi Bandung, West Java 40132, Indonesia
(6) School of Life Sciences and Technology, Institut Teknologi Bandung, West Java 40132, Indonesia
(*) Corresponding Author

Abstract


Chili (Capsicum annuum L.) is a highly valued vegetable, renowned for its unique taste and aroma. However, chili production faces challenges in meeting the high demand due to infections caused by pathogens such as ChiVMV (potyvirus). Previous studies have suggested that chili eIF4E1 plays a crucial role in potyvirus gene transcription. Therefore, this study explores the potential of CRISPR‐Cas9‐based genome editing to enhance chili resistance by introducing premature stop codons or truncated proteins. Two sgRNAs were designed, targeting the first and second intron of the eIF4E1 gene. The production of Cas9 protein was assessed with varying IPTG concentrations in Escherichia coli BL21(DE3), carrying 4xNLS‐pMJ915v2‐sfGFP plasmid with a TEV protease cut‐site at the N terminal. The findings indicate that the optimal IPTG concentration is 500 µM. Purification using an IMAC column confirmed the presence of Cas9 in the initial 2 mL of the eluted fractions, as indicated by numerous background proteins. Nevertheless, successful formation of Cas9‐RNP complexes was achieved for both sgRNAs. The nucleolytic activity of Tag‐Cas9 (carrying the MBP‐tag) and Cas9 was confirmed through in vitro endonuclease activity assays. The next step involved transfecting chili protoplasts with these RNP complexes to edit the chili eIF4E1 gene.


Keywords


CRISPR‐Cas9; Endonuclease; Recombinant protein; sgRNA Cas9‐RNP



References

Aliaga-Franco N, Zhang C, Presa S, Srivastava AK, Granell A, Alabadí D, Sadanandom A, Blázquez MA, Minguet EG. 2019. Identification of transgenefree CRISPR-edited plants of rice, tomato, and Arabidopsis by monitoring DsRED fluorescence in dry seeds. Front. Plant Sci. 10:1150. doi:10.3389/fpls.2019.01150.

Anders C, Jinek M. 2014. In vitro enzymology of cas9. Methods Enzymol. 546:1–20. doi:10.1016/B978-0- 12-801185-0.00001-5.

Anders C, Niewoehner O, Duerst A, Jinek M. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513(7519):569–7. doi:10.1038/nature13579.

Andersen KR, Leksa NC, Schwartz TU. 2013. Optimized E. coli expression strain LOBSTR eliminates common contaminants from His-tag purification. Proteins Struct. Funct. Bioinforma. 81(11):1857–61. doi:10.1002/prot.24364.

Anderson EM, Haupt A, Schiel JA, Chou E, Machado HB, Strezoska Ž, Lenger S, McClelland S, Birmingham A, Vermeulen A, Smith AVB. 2015. Systematic analysis of CRISPR-Cas9 mismatch tolerance reveals low levels of off-target activity. J. Biotechnol. 211:56–65. doi:10.1016/j.jbiotec.2015.06.427.

Anzalone AV, Koblan LW, Liu DR. 2020. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38(7). doi:10.1038/s41587-020-0561-9.

Bae S, Kweon J, Kim HS, Kim JS. 2014. Microhomologybased choice of Cas9 nuclease target sites. Nat. Methods 11(7). doi:10.1038/nmeth.3015.

Bhatwa A, Wang W, Hassan YI, Abraham N, Li XZ, Zhou T. 2021. Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications. Front. Bioeng. Biotechnol. 9. doi:10.3389/fbioe.2021.630551.

Bolanos-Garcia VM, Davies OR. 2006. Structural analysis and classification of native proteins from E. coli commonly co-purified by immobilised metal affinity chromatography. Biochim. Biophys. Acta - Gen. Subj. 1760(9):1304–13. doi:10.1016/j.bbagen.2006.03.027.

Bortesi L, Zhu C, Zischewski J, Perez L, Bassié L, Nadi R, Forni G, Lade SB, Soto E, Jin X, Medina V, Villorbina G, Muñoz P, Farré G, Fischer R, Twyman RM, Capell T, Christou P, Schillberg S. 2016. Patterns of CRISPR/Cas9 activity in plants, animals, and microbes. Plant Biotechnol. J. 14(12):2203–2216. doi:10.1111/pbi.12634.

Budiani A, Nugroho IB, Sari DA, Palupi I, Putranto RA. 2019. CRISPR/Cas9-mediated knockout of an oil palm defense-related gene to the pathogenic fungus Ganoderma boninense. Indones. J. Biotechnol. 24(2):101–105. doi:10.22146/ijbiotech.52170.

Cao H, Lin R. 2009. Quantitative evaluation of histag purification and immunoprecipitation of tristetraprolin and its mutant proteins from transfected human cells. Biotechnol. Prog. 25(2):461–467. doi:10.1002/btpr.121.

Carmignotto GP, Azzoni AR. 2019. On the expression of recombinant Cas9 protein in E. coli BL21(DE3) and BL21(DE3) Rosetta strains. J. Biotechnol. 306:62– 70. doi:10.1016/j.jbiotec.2019.09.012.

Cribbs AP, Perera SM. 2017. Science and bioethics of CRISPR-CAS9 gene editing: An analysis towards separating facts and fiction. Yale J. Biol. Med. 90(4):625–634.

da Costa DV, Paiva CLdA, Bento CdS, Sudré CP, Cavalcanti TFM, Gonçalves LSA, Viana AP, Rodrigues R. 2021. Breeding for pepper yellow mosaic virus resistance and agronomic attributes in recombinant inbred lines of chili pepper (Capsicum baccatum L.) using mixed models. Sci. Hortic. (Amsterdam). 282:110025. doi:10.1016/j.scienta.2021.110025.

Dinh T, Bernhardt TG. 2011. Using superfolder green fluorescent protein for periplasmic protein localization studies. J. Bacteriol. 193(18):4984–7. doi:10.1128/JB.00315-11.

Donovan RS, Robinson CW, Click BR. 1996. Review: Optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J. Ind. Microbiol. 16(3):145–54. doi:10.1007/BF01569997.

Duprat A, Caranta C, Revers F, Menand B, Browning KS, Robaglia C. 2002. The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J. 32(6):927–34. doi:10.1046/j.1365- 313X.2002.01481.x.

Flottmann F, Pohl GM, Gummert J, Milting H, Brodehl A. 2022. A detailed protocol for expression, purification, and activity determination of recombinant SaCas9. STAR Protoc. 3(2):101276. doi:10.1016/j.xpro.2022.101276.

Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. 2013. High-frequency offtarget mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31:822–826. doi:10.1038/nbt.2623.

Groves NR, Mckenna JF, Evans DE, Graumann K, Meier I. 2019. A nuclear localization signal targets tailanchored membrane proteins to the inner nuclear envelope in plants. J. Cell Sci. 132(7):jcs226134. doi:10.1242/jcs.226134.

Hayat SMG, Farahani N, Golichenari B, Sahebkar A. 2018. Recombinant protein expression in Escherichia coli (E.coli): What we need to know. Curr. Pharm. Des. 24(6):718–725. doi:10.2174/1381612824666180131121940.

Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. doi:10.1016/j.cell.2014.05.010.

Jeong H, Kim HJ, Lee SJ. 2015. Complete genome sequence of Escherichia coli strain BL21. Genome Announc. 3(2):e00134–15. doi:10.1128/genomeA.00134-15.

Jiang F, Doudna JA. 2017. CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys. 46:505–529. doi:10.1146/annurev-biophys-062215-010822.

Kerpedjiev P, Hammer S, Hofacker IL. 2015. Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams. Bioinformatics 31(20):3377–3379. doi:10.1093/bioinformatics/btv372.

Khan S, Mahmood MS, Rahman SU, Zafar H, Habibullah S, Khan Z, Ahmad A. 2018. CRISPR/Cas9: The Jedi against the dark empire of diseases. J. Biomed. Sci. 25:29. doi:10.1186/s12929-018-0425-5.

Kuzmine I, Gottlieb PA, Martin CT. 2003. Binding of the priming nucleotide in the initiation of transcription by T7 RNA polymerase. J. Biol. Chem. 278(5):2819–23. doi:10.1074/jbc.M208405200.

Liang G, Zhang H, Lou D, Yu D. 2016. Selection of highly efficient sgRNAs for CRISPR/Cas9- based plant genome editing. Sci. Rep. 6:21451. doi:10.1038/srep21451.

Liang Z, Chen K, Zhang Y, Liu J, Yin K, Qiu JL, Gao C. 2018. Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nat. Protoc. 13(3):413–430. doi:10.1038/nprot.2017.145.

Lu J, Wu T, Zhang B, Liu S, Song W, Qiao J, Ruan H. 2021. Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Commun. Signal. 19(1):60. doi:10.1186/s12964-021- 00741-y.

Ma L, Sun Y, Ruan X, Huang PC, Wang S, Li S, Zhou Y, Wang F, Cao Y, Wang Q, Wang Z, Kolomiets MV, Gao X. 2021. Genome-wide characterization of jasmonates signaling components reveals the essential role of ZmCOI1a-ZmJAZ15 action module in regulating maize immunity to Gibberella stalk rot. Int. J. Mol. Sci. 22(2):870. doi:10.3390/ijms22020870.

Mehravar M, Shirazi A, Mehrazar MM, Nazari M. 2019. In vitro pre-validation of gene editing by CRISPR/Cas9 ribonucleoprotein. Avicenna J. Med. Biotechnol. 11(3):259–263.

Ministry of Agriculture of the Republic of Indonesia. 2019. Data Lima Tahun Terakhir Sektor Hotrikultura Indonesia [Data for the Last Five Years of the Indonesian Hotriculture Sector]. Ministry of Agriculture of the Republic of Indonesia, Jakarta.

Moury B, Charron C, Janzac B, Simon V, Gallois JL, Palloix A, Caranta C. 2014. Evolution of plant eukaryotic initiation factor 4E (eIF4E) and potyvirus genomelinked protein (VPg): A game of mirrors impacting resistance spectrum and durability. Infect. Genet. Evol. 27:472–80. doi:10.1016/j.meegid.2013.11.024.

Niopek D, Benzinger D, Roensch J, Draebing T, Wehler P, Eils R, Di Ventura B. 2014. Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells. Nat. Commun. 5:4404. doi:10.1038/ncomms5404.

Palermo G, Chen JS, Ricci CG, Rivalta I, Jinek M, Batista VS, Doudna JA, McCammon JA. 2018. Key role of the REC lobe during CRISPR-Cas9 activation by ’sensing’, ’regulating’, and ’locking’ the catalytic HNH domain. Q. Rev. Biophys. 51:e91. doi:10.1017/S0033583518000070.

Park J, Bae S, Kim JS. 2015. Cas-Designer: A web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics 31(24):4014–4016. doi:10.1093/bioinformatics/btv537.

Petersen B, Niemann H. 2015. Molecular scissors and their application in genetically modified farm animals. Transgenic Res. 24(3):381–396. doi:10.1007/s11248-015-9862-z.

Piron F, Nicolaï M, Minoïa S, Piednoir E, Moretti A, Salgues A, Zamir D, Caranta C, Bendahmane A. 2010. An induced mutation in tomato eiF4E leads to immunity to two potyviruses. PLoS One 5(6):e11313. doi:10.1371/journal.pone.0011313.

Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. 2013. Repurposing CRISPR as an RNA-γuided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183. doi:10.1016/j.cell.2013.02.022.

Qiao J, Li W, Lin S, Sun W, Ma L, Liu Y. 2019. Co-expression of Cas9 and single-guided RNAs in Escherichia coli streamlines production of Cas9 ribonucleoproteins. Commun. Biol. 2:161. doi:10.1038/s42003-019-0402-x.

Schindele P, Wolter F, Puchta H. 2020. CRISPR guide RNA design guidelines for efficient genome editing. Methods Mol. Biol. 2166:331–342. doi:10.1007/978- 1-0716-0712-1_19.

Staahl BT, Benekareddy M, Coulon-Bainier C, Banfal AA, Floor SN, Sabo JK, Urnes C, Munares GA, Ghosh A, Doudna JA. 2017. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat. Biotechnol. 35(5):431–434. doi:10.1038/nbt.3806.

Sundaresan R, Parameshwaran HP, Yogesha SD, Keilbarth MW, Rajan R. 2017. RNAindependent DNA cleavage activities of Cas9 and Cas12a. Cell Rep. 21(13):3728–3739. doi:10.1016/j.celrep.2017.11.100.

Tomoo K, Shen X, Okabe K, Nozoe Y, Fukuhara S, Morino S, Sasaki M, Taniguchi T, Miyagawa H, Kitamura K, Miura KI, Ishida T. 2003. Structural features of human initiation factor 4E, studied by X-ray crystal analyses and molecular dynamics simulations. J. Mol. Biol. 328(2):365–383. doi:10.1016/S0022- 2836(03)00314-0.

Wang A, Krishnaswamy S. 2012. Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Mol. Plant Pathol. 13(7):795–803. doi:10.1111/j.1364- 3703.2012.00791.x.

Williams GJ, Breazeale SD, Raetz CR, Naismith JH. 2005. Structure and function of both domains of ArnA, a dual function decarboxylase and a formyltransferase, involved in 4-amino-4-deoxy-L-arabinose biosynthesis. J. Biol. Chem. 280(24):23000–8. doi:10.1074/jbc.M501534200.

Wingfield PT. 2015. Overview of the purification of recombinant proteins. Curr. Protoc. Protein Sci. 80:6.1.1–6.1.35. doi:10.1002/0471140864.ps0601s80.

Wright AV, Nuñez JK, Doudna JA. 2016. Biology and applications of CRISPR systems: Harnessing nature’s toolbox for genome engineering. Cell 164(1-2):29– 44. doi:10.1016/j.cell.2015.12.035.

Zhang Z, Kuipers G, Niemiec Ł, Baumgarten T, Slotboom DJ, de Gier JW, Hjelm A. 2015. High-level production of membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG. Microb. Cell Fact. 14(1):142. doi:10.1186/s12934-015-0328-z.

MA, Minguet EG. 2019. Identification of transgenefree CRISPR-edited plants of rice, tomato, and Arabidopsis by monitoring DsRED fluorescence in dry seeds. Front. Plant Sci. 10:1150. doi:10.3389/fpls.2019.01150.

Anders C, Jinek M. 2014. In vitro enzymology of cas9. Methods Enzymol. 546:1–20. doi:10.1016/B978-0- 12-801185-0.00001-5.

Anders C, Niewoehner O, Duerst A, Jinek M. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513(7519):569–7. doi:10.1038/nature13579.

Andersen KR, Leksa NC, Schwartz TU. 2013. Optimized E. coli expression strain LOBSTR eliminates common contaminants from His-tag purification. Proteins Struct. Funct. Bioinforma. 81(11):1857–61. doi:10.1002/prot.24364.

Anderson EM, Haupt A, Schiel JA, Chou E, Machado HB, Strezoska Ž, Lenger S, McClelland S, Birmingham A, Vermeulen A, Smith AVB. 2015. Systematic analysis of CRISPR-Cas9 mismatch tolerance reveals low levels of off-target activity. J. Biotechnol. 211:56–65. doi:10.1016/j.jbiotec.2015.06.427.

Anzalone AV, Koblan LW, Liu DR. 2020. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38(7). doi:10.1038/s41587-020-0561-9.

Bae S, Kweon J, Kim HS, Kim JS. 2014. Microhomologybased choice of Cas9 nuclease target sites. Nat. Methods 11(7). doi:10.1038/nmeth.3015.

Bhatwa A, Wang W, Hassan YI, Abraham N, Li XZ, Zhou T. 2021. Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications. Front. Bioeng. Biotechnol. 9. doi:10.3389/fbioe.2021.630551.

Bolanos-Garcia VM, Davies OR. 2006. Structural analysis and classification of native proteins from E. coli commonly co-purified by immobilised metal affinity chromatography. Biochim. Biophys. Acta - Gen. Subj. 1760(9):1304–13. doi:10.1016/j.bbagen.2006.03.027.

Bortesi L, Zhu C, Zischewski J, Perez L, Bassié L, Nadi R, Forni G, Lade SB, Soto E, Jin X, Medina V, Villorbina G, Muñoz P, Farré G, Fischer R, Twyman RM, Capell T, Christou P, Schillberg S. 2016. Patterns of CRISPR/Cas9 activity in plants, animals, and microbes. Plant Biotechnol. J. 14(12):2203–2216. doi:10.1111/pbi.12634.

Budiani A, Nugroho IB, Sari DA, Palupi I, Putranto RA. 2019. CRISPR/Cas9-mediated knockout of an oil palm defense-related gene to the pathogenic fungus Ganoderma boninense. Indones. J. Biotechnol. 24(2):101–105. doi:10.22146/ijbiotech.52170.

Cao H, Lin R. 2009. Quantitative evaluation of histag purification and immunoprecipitation of tristetraprolin and its mutant proteins from transfected human cells. Biotechnol. Prog. 25(2):461–467.

doi:10.1002/btpr.121.

Carmignotto GP, Azzoni AR. 2019. On the expression of recombinant Cas9 protein in E. coli BL21(DE3) and BL21(DE3) Rosetta strains. J. Biotechnol. 306:62– 70. doi:10.1016/j.jbiotec.2019.09.012.

Cribbs AP, Perera SM. 2017. Science and bioethics of CRISPR-CAS9 gene editing: An analysis towards separating facts and fiction. Yale J. Biol. Med. 90(4):625–634.

da Costa DV, Paiva CLdA, Bento CdS, Sudré CP, Cavalcanti TFM, Gonçalves LSA, Viana AP, Rodrigues R. 2021. Breeding for pepper yellow mosaic virus resistance and agronomic attributes in recombinant inbred lines of chili pepper (Capsicum baccatum L.) using mixed models. Sci. Hortic. (Amsterdam). 282:110025. doi:10.1016/j.scienta.2021.110025.

Dinh T, Bernhardt TG. 2011. Using superfoldergreen fluorescent protein for periplasmic protein localization studies. J. Bacteriol. 193(18):4984–7.doi:10.1128/JB.00315-11.Donovan RS, Robinson CW, Click BR. 1996. Review: Optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J. Ind. Microbiol. 16(3):145–54. doi:10.1007/BF01569997.

Duprat A, Caranta C, Revers F, Menand B, Browning KS, Robaglia C. 2002. The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J. 32(6):927–34. doi:10.1046/j.1365- 313X.2002.01481.x.

Flottmann F, Pohl GM, Gummert J, Milting H, Brodehl A. 2022. A detailed protocol for expression, purification, and activity determination of recombinant SaCas9. STAR Protoc. 3(2):101276. doi:10.1016/j.xpro.2022.101276.

Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. 2013. High-frequency offtarget mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31:822–826. doi:10.1038/nbt.2623.

Groves NR, Mckenna JF, Evans DE, Graumann K, Meier I. 2019. A nuclear localization signal targets tailanchored membrane proteins to the inner nuclear envelope in plants. J. Cell Sci. 132(7):jcs226134. doi:10.1242/jcs.226134.

Hayat SMG, Farahani N, Golichenari B, Sahebkar

A. 2018. Recombinant protein expressionin Escherichia coli (E.coli): What we needto know. Curr. Pharm. Des. 24(6):718–725.doi:10.2174/1381612824666180131121940.Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 forgenome engineering. Cell 157(6):1262–1278.doi:10.1016/j.cell.2014.05.010.Jeong H, Kim HJ, Lee SJ. 2015. Completegenome sequence of Escherichia coli strainBL21. Genome Announc. 3(2):e00134–15.



DOI: https://doi.org/10.22146/ijbiotech.86778

Article Metrics

Abstract views : 2210 | views : 540 | views : 603

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.