A response surface methodology for the use of MIL‐101 as a catalyst for the one‐step synthesis of lactide

https://doi.org/10.22146/ijbiotech.82387

Clara Novia(1), Catia Angli Curie(2), Misri Gozan(3*)

(1) Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
(2) Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia; Chemical Engineering Department, Universitas Pertamina, Jakarta 12220, Indonesia
(3) Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia; Research Center for Biomass Valorization, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
(*) Corresponding Author

Abstract


Lactide is a vital monomer for producing high molecular weight polylactic acid (PLA) through ring‐opening polymerization. This study synthesized crude lactide from L‐lactic acid with MIL‐101 as the catalyst. MIL‐101 is a metal‐based catalyst with organic ligands (MOF) that was prepared by reacting Cr(NO3)3.9H2O with terephthalic acid (BDC). The formation of MIL‐101 was confirmed from Fourier‐transform infrared (FTIR) analysis. The role of MIL‐101 and the effect of temperature, time, and MIL‐101 loading, as well as their interactions in the conversion of lactic acid to crude lactide, were then investigated using the response surface method (RSM). Crude lactide was analyzed using 1H‐nuclear magnetic resonance (NMR) spectroscopy to confirm the presence of lactide. The RSM results indicated that the highest conversion of 22.84% can be obtained using a temperature of 175 °C, 1.5% w/w MIL‐101 loading, and a reaction time of 5 h. The RSM model showed that the interaction of MIL‐101 loading and reaction time strongly affected the conversion of lactic acid to lactide, with a P‐value of 0.0021 and an F‐value of 50.45. In contrast, the interaction of catalyst loading and temperature did not significantly affect the conversion of lactic acid to lactide, with a P‐value of 0.2565 and an F‐value of 1.75.

Keywords


one-step synthesis, lact Lactic acid; Lactide; MIL‐101; One‐step synthesis; Polylactic acid (PLA)ic acid, lactide, MIL-101, polylactic acid (PLA), RSM.

Full Text:

PDF


References

Botvin V, Karaseva S, Khasanov V. 2020. Depolymerization of lactic acid oligomers into lactide: Epimerization, stereocomplex formation, and nature of interactions of oligomers. Polym. Degrad. Stab. 182:109382. doi:10.1016/j.polymdegradstab.2020.109382.

Botvin V, Karaseva S, Salikova D, Dusselier M. 2021. Syntheses and chemical transformations of glycolide and lactide as monomers for biodegradable polymers. Polym. Degrad. Stab. 183:109427. doi:10.1016/j.polymdegradstab.2020.109427.

Cunha BL, Bahú JO, Xavier LF, Crivellin S, de Souza SD, Lodi L, Jardini AL, Maciel Filho R, Schiavon MI, Cárdenas Concha VO, Severino P, Souto EB. 2022. Lactide: Production routes, properties, and applications. doi:10.3390/bioengineering9040164.

Du PD, Thanh HTM, To TC, Thang HS, Tinh MX, Tuyen TN, Hoa TT, Khieu DQ. 2019. Metal-organic framework MIL-101: Synthesis and photocatalytic degradation of remazol black B dye. J. Nanomater. 2019:1– 15. doi:10.1155/2019/6061275.

Ehsani M, Khodabakhshi K, Asgari M. 2014. Lactide synthesis optimization: Investigation of the temperature, catalyst and pressure effects. E-Polymers 14(5):353– 361. doi:10.1515/epoly-2014-0055.

Ghadamyari M, Chaemchuen S, Zhou K, Dusselier M, Sels BF, Mousavi B, Verpoort F. 2018. One-step synthesis of stereo-pure L,L lactide from L-lactic acid. Catal. Commun. 114:33–36. doi:10.1016/j.catcom.2018.06.003.

Gromov N, Taran O, Parmon V. 2018. CHAPTER 3: Catalysts for Depolymerization of Biomass. The Royal Society of Chemistry. p. 65–97. doi:10.1039/9781788013567-00065.

Groot W, van Krieken J, Sliekersl O, de Vos S. 2022. Production and purification of lactic acid and lactide. United Kingdom: Wiley. p. 499. doi:10.1002/9780470649848.ch1.

Hu Y, Daoud WA, Fei B, Chen L, Kwan TH, Ki Lin CS. 2017. Efficient ZnO aqueous nanoparticle catalysed lactide synthesis for poly(lactic acid) fibre production from food waste. J. Clean. Prod. 165:157–167. doi:10.1016/j.jclepro.2017.07.067.

Huang W, Qi Y, Cheng N, Zong X, Zhang T, Jiang W, Li H, Zhang Q. 2014. Green synthesis of enantiomerically pure l-lactide and d-lactide using biogenic creatinine catalyst. Polym. Degrad. Stab. 101(1):18–23. doi:10.1016/j.polymdegradstab.2014.01.022.

Kayal S, Sun B, Chakraborty A. 2015. Study of metal-organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks). Energy 91:772–781. doi:10.1016/j.energy.2015.08.096.

Moravek SJ. 2008. Synthesis, propagation kinetics, and characterization of D,L-lactide based polyols and polyurethanes therefrom. Dissertations, University of Southern Mississippi, Mississippi.

Niknam E, Panahi F, Daneshgar F, Bahrami F, Khalafi-Nezhad A. 2018. Metal-organic framework MIL-101(Cr) as an efficient heterogeneous catalyst for clean synthesis of benzoazoles. ACS Omega 3(12):17135–17144. doi:10.1021/acsomega.8b02309.

Nyiavuevang B, Sodkampang S, Dokmaikun S, Thumanu K, Boontawan A, Junpirom S. 2022. Effect of temperature and time for the production of polylactic acid without initiator catalyst from lactide synthesized from ZnO powder catalyst. In: J. Phys. Conf. Ser., volume 2175. p. 012042. doi:10.1088/1742- 6596/2175/1/012042.

Rahmayetty, Sukirno, Prasetya B, Gozan M. 2015. Effect of temperature and concentration of SnCl2 on depolymerization process of L-lactide synthesis from Llactic acid via short polycondensation. Int. J. Appl. Eng. Res. 10(21):41942–41946.

Said KAM, Amin MAM. 2015. Overview on the response surface methodology (RSM) in extraction processes. J. Appl. Sci. Process Eng. 2(1):8–17. doi:10.33736/jaspe.161.2015.

Tsukegi T, Motoyama T, Shirai Y, Nishida H, Endo T. 2007. Racemization behavior of l,l-lactide during heating. Polym. Degrad. Stab. 92(4):552–559. doi:10.1016/j.polymdegradstab.2007.01.009.

Upare PP, Lee M, Hwang DW, Hwang YK, Chang JS. 2014. New heterogeneous Pb oxide catalysts for lactide production from an azeotropic mixture of ethyl lactate and water. Catal. Commun. 56(2014):179– 183. doi:10.1016/j.catcom.2014.07.026.

Yang D, Gates BC. 2019. Catalysis by metal organic frameworks: Perspective and suggestions for future research. ACS Catal. 9(3):1779–1798. doi:10.1021/acscatal.8b04515.

Yoo DK, Kim D, Doo SL. 2006. Synthesis of lactide from oligomeric PLA: Effects of temperature, pressure, and catalyst. Macromol. Res. 14(5):510–516. doi:10.1007/bf03218717.

Yulia F, Utami VJ, Nanda R, Nasruddin, Arif Budiyanto M, Zulys A. 2021. Preparation of metalorganic frameworks (MOFs) based chromium 2,6-naphtalenedicarboxylic acid (MIL-101 NDC) for CO 2 adsorption application. IOP Conf. Ser. Mater. Sci. Eng. 1078(1):012021. doi:10.1088/1757- 899x/1078/1/012021.

Yuliastri NP, Ratnaningsih E, Hertadi R. 2017. Cloning of acetyl-CoA acetyltransferase gene from Halomonas elongata BK-AG18 and in silico analysis of its gene product. Indones. J. Biotechnol. 22(1):39–42. doi:10.22146/ijbiotech.27235.



DOI: https://doi.org/10.22146/ijbiotech.82387

Article Metrics

Abstract views : 878 | views : 729

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.