A comprehensive study of potential Arthrospira platensis cultivated in various manure‐based media for biodiesel feedstock

https://doi.org/10.22146/ijbiotech.81862

Rachmawati Rusydi(1*), Eva Ayuzar(2), Muliani Muliani(3), Saifuddin Saifuddin(4)

(1) Aquaculture Department, Faculty of Agriculture, Universitas Malikussaleh, North Aceh, Indonesia; Center of Excellence of Biodiesel Research and Innovation, Universitas Malikussaleh, Indonesia
(2) Aquaculture Department, Faculty of Agriculture, Universitas Malikussaleh, North Aceh, Indonesia
(3) Aquaculture Department, Faculty of Agriculture, Universitas Malikussaleh, North Aceh, Indonesia; Center of Excellence of Biodiesel Research and Innovation, Universitas Malikussaleh, Indonesia
(4) Antropology Department, Faculty of Social and Politics, Universitas Malikussaleh, North Aceh, Indonesia
(*) Corresponding Author

Abstract


Arthrospira platensis has emerged as a promising biodiesel feedstock due to its rapid growth and substantial biomass. In efforts to reduce production costs, researchers have explored alternative media derived from livestock waste to modify conventional mediums for Arthrospira platensis cultivation. The experimental design of this research employed a Completely Randomized Design, with treatments comprising inorganic fertilizer (A), chicken manure (B), cow manure (C), and goat manure (D). The livestock manures were macerated for seven days before being utilized as A. platensis medium. The results revealed significant (p < 0.05) impacts of different media on peak growth values and biomass production, reaching 2.03 ± 0.06 g/L and 1.76 ± 0.05 g/ L, respectively for chicken manure. The highest peak lipid content was observed in A. platensis cultured in goat manure medium. This study recommends goat manure as the preferred medium for mass cultivation of A. platensis. Mass cultivation in goat manure medium yielded 1.53 kg of dried biomass, with a lipid content of 1.91% and a biodiesel yield of 1.65%. The predominant fatty acid in this biodiesel was heneicosane, constituting 26.4% of the total area.

Keywords


Arthrospira platensis; Biodiesel; Biomass; Lipid; Livestock manure

Full Text:

PDF


References

Abdel-Moneim AME, Shehata AM, Mohamed NG, Elbaz AM, Ibrahim NS. 2022. Synergistic effect of Spirulina platensis and selenium nanoparticles on growth performance, serum metabolites, immune responses, and antioxidant capacity of heat-stressed broiler chickens. Biol. Trace Elem. Res. 200(2):768– 779. doi:10.1007/s12011-021-02662-w.

Andayani A, Sarido L. 2013. Uji empat jenis pupuk kandang terhadap pertumbuhan dan hasil tanaman cabai keriting (Capsicum annum L.) [Testing of four types of manure on the growth and yield of curly chili plants (Capsicum annum L.)]. AGRIFOR 12(1):22–29.

Astiani F, Dewiyanti I, Mellisa S. 2016. Pengaruh media kultur yang berbeda terhadap laju pertumbuhan dan biomassa Spirulina Sp. [Effect of different culture media on growth rate and biomass of Spirulina sp.]. J. Ilm. Mhs. Kelaut. dan Perikan. Unsyiah 1(3):441– 447.

Bhakar RN, Kumar R, Pabbi S. 2013. Total lipids and fatty acid profile of different Spirulina strains as affected by salinity and incubation time. Vegetos 26(Special):148–154. doi:10.5958/j.2229- 4473.26.2s.133.

Braga VdS, Mastrantonio DJdS, Costa JAV, de Morais MG. 2018. Cultivation strategy to stimulate high carbohydrate content in Spirulina biomass. Bioresour. Technol. 269:221–226. doi:10.1016/j.biortech.2018.08.105.

Chen H, Ding M, Li Y, Xu H, Li Y, Wei Z. 2020. Feedstocks, environmental effects and development suggestions for biodiesel in China. doi:10.1016/j.jtte.2020.10.001.

Chowdury KH, Nahar N, Deb UK. 2020. The growth factors involved in microalgae cultivation for biofuel production: A review. Comput. Water, Energy, Environ. Eng. 09(04):185–215. doi:10.4236/cweee.2020.94012.

Costa JAV, Freitas BCB, Rosa GM, Moraes L, Morais MG, Mitchell BG. 2019. Operational and economic aspects of Spirulina-based biorefinery. doi:10.1016/j.biortech.2019.121946.

El-Shimi HI, Attia NK, El-Sheltawy ST, El-Diwani GI. 2013. Biodiesel production from Spirulina platensis microalgae by in-situ transesterification process. J. Sustain. Bioenergy Syst. 03(03):224–233. doi:10.4236/jsbs.2013.33031.

Febtisuharsi A. 2016. Kepadatan sel dan kadar lipid mikroalga Chlorella sp. pada kultur media alternatif kotoran ternak. Ph.D. thesis, Universitas Negeri Surabaya, Surabaya.

Haghighi M, Zare LB, Ghiasi M. 2022. Biodiesel production from Spirulina algae oil over [Cu(H2PDC)(H2O)2] complex using transesterification reaction: Experimental study and DFT approach. Chem. Eng. J. 430:132777. doi:10.1016/j.cej.2021.132777.

Hartami P, Mauliyani M, Erniati E, Masyithah P, Kurniawan R, Suhaila N, Muliani M, Rusydi R. 2022. Effectiveness of Spirulina platensis as a bioremediator candidate for vaname shrimp (Litopenaeus vannamei) wastewater. Acta Aquat. Aquat. Sci. J. 9(1):54–59. doi:10.29103/aa.v9i1.6992.

Hindarti F, Ayuningtyas E. 2020. Pengembangan teknik kultivasi Spirulina sp. sebagai sumber biomassa energi terbarukan dalam fotobioreaktor airlift. J. Energi dan Lingkung. 16(1):17–24. doi:10.29122/jel.v16i1.4578.

Jati F, Hutabarat J, Herawati VE. 2012. Pengaruh penggunaan dua jenis media kultur teknis yang berbeda terhadap pola pertumbuhan, kandungan protein dan asam lemak omega-3 EPA (Chaetoceros gracilis) [The effect of using two different types of technical culture media on growth patterns, protein content and EPA omega-3 Fatty Acids (Chaetoceros gracilis)]. J. Aquac. Manag. Technol. 1(1):221–235. Retrieved from http://ejournal-s1.undip.ac.id/index.php/jfpik.

Kalsum L, Dewi E, Margarety E, Ningsih AS. 2019. Lipid extraction from microalgae Spirulina platensis for raw materials of biodiesel. J. Phys. Conf. Ser. 1167(1):1–7. doi:10.1088/1742- 6596/1167/1/012051.

Lage S, Toffolo A, Gentili FG. 2021. Microalgal growth, nitrogen uptake and storage, and dissolved oxygen production in a polyculture based-open pond fed with municipal wastewater in northern Sweden. Chemosphere 276:1–11. doi:10.1016/j.chemosphere.2021.130122.

Li G, Li H, Leffelaar PA, Shen J, Zhang F. 2014. Characterization of phosphorus in animal manures collected from three (dairy, swine, and broiler) farms in China. PLoS One 9(7):1–8. doi:10.1371/journal.pone.0102698.

Lupatini AL, Colla LM, Canan C, Colla E. 2017. Potential application of microalga Spirulina platensis as a protein source. doi:10.1002/jsfa.7987.

Mata TM, Martins AA, Oliveira O, Oliveira S, Mendes AM, Caetano NS. 2016. Lipid content and productivity of Arthrospira platensis and Chlorella vulgaris under mixotrophic conditions and salinity stress. Chem. Eng. Trans. 49:187–192. doi:10.3303/CET1649032.

Mathiyazhagan M, Ganapathi A. 2011. Factors affecting biodiesel production. Res. Plant Biol. 1(2):01–05. Retrieved from http://ejournals1.undip.ac.id/index.php/jfpik.

Mbatha KC, McHunu CN, Mavengahama S, Ntuli NR. 2021. Effect of poultry and goat manures on the nutrient content of Sesamum alatum leafy vegetables. Appl. Sci. 11(24):1–13. doi:10.3390/app112411933.

Muliani M, Ayuzar E, Amri MC. 2018. Pengaruh pemberian pupuk kascing (bekas cacing) yang difermentasi dengan dosis yang berbeda dalam kultur Spirulina sp. [The effect of vermi compost fermented with different doses in Spirulina sp. culture]. Acta Aquat. Aquat. Sci. J. 5(1):30–35. doi:10.29103/aa.v5i1.658.

Novitasari D, Caroline J. 2021. Kajian efektivitas pupuk dari berbagai kotoran sapi, kambing dan ayam [Study of the effectiveness of fertilizer from various cow, goat and chicken manure]. Semin. Teknol. Perencanaan, Perancangan, Lingkungan, dan Infrastruktur II(2003):442–447.

Pradana YS, Dewi RN, Di Livia K, Arisa F, Rochmadi, Cahyono RB, Budiman A. 2020. Advancing biodiesel production from microalgae Spirulina sp. by a simultaneous extraction-transesterification process using palm oil as a co-solvent of methanol. Open Chem. 18(1):833–842. doi:10.1515/chem-2020-0133.

Putri DL. 2019. Optimasi pH pertumbuhan mikroalga Spirulina sp. menggunakan air laut yang diperkaya media Walne [Optimization of pH for microalgae Spirulina sp. growth using marine water enriched with Walne’s media]. Bachelor thesis, Sanata Dharma University, Yogyakarta.

Rahman M, Aziz M, Al-khulaidi RA, Sakib N, Islam M. 2017. Biodiesel production from microalgae Spirulina maxima by two step process: Optimization of process variable. J. Radiat. Res. Appl. Sci. 10(2):140– 147. doi:10.1016/j.jrras.2017.02.004.

Rusydi R. 2018. Prospektif biodiesel dari cyanobacteria dan mikroalga [Prospective biodiesel from cyanobacteria and microalgae]. Lhokseumawe: Sefa Bumi Persada.

Rusydi R, Rusydi R, Yakupitiyage A, Gallardo WG, Dabbadie L, Anal AK. 2015. Potential of Nostoc muscorum cultured in BG-II medium as biodiesel feedstock source: Evaluation of nutrient requirement for culture and its daily lipid content. KnE Life Sci. 2(1):103– 113. doi:10.18502/kls.v1i0.93.

Soni RA, Sudhakar K, Rana RS. 2019. Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy Reports 5:327–336. doi:10.1016/j.egyr.2019.02.009.

Sopandi T, Rohmah S, Agustina SAT. 2020. Biomass and nutrient composition of Spirulina platensis grown in goat manure media. Asian J. Agric. Biol. 8(2):158– 167. doi:10.35495/ajab.2019.06.274.

Trivedi J, Aila M, Bangwal DP, Kaul S, Garg MO. 2015. Algae based biorefinery - How to make sense? doi:10.1016/j.rser.2015.03.052.

Utomo N, Winarti, Erlina A. 2005. Growth of Spirulina platensis cultured with inorganic fertilizer (Urea, TSP and ZA) and chicken manure. J. Akuakultur Indones. 4(1):41–48. doi:10.19027/jai.4.41-48.

Vo TD, Nguyen NAT, Huynh PX, Nguyen H, Nim T, Tran D, Nguyen PHD. 2017. The growth and lipid accumulation of Spirulina sp. under different light conditions. World J. Food Sci. Technol. 1(3):101–104. doi:10.11648/j.wjfst.20170103.13.

Zarrinmehr MJ, Farhadian O, Heyrati FP, Keramat J, Koutra E, Kornaros M, Daneshvar E. 2020. Effect of nitrogen concentration on the growth rate and biochemical composition of the microalga, Isochrysis galbana. Egypt. J. Aquat. Res. 46(2):153–158. doi:10.1016/j.ejar.2019.11.003.

Zhai J, Li X, Li W, Rahaman MH, Zhao Y, Wei B, Wei H. 2017. Optimization of biomass production and nutrients removal by Spirulina platensis from municipal wastewater. Ecol. Eng. 108:83–92. doi:10.1016/j.ecoleng.2017.07.023.



DOI: https://doi.org/10.22146/ijbiotech.81862

Article Metrics

Abstract views : 1135 | views : 880

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.