Antibacterial activity of bioactive compound produced by endophytic fungi isolated from Mangifera casturi Kosterm endemic plant from South Kalimantan, Indonesia

https://doi.org/10.22146/ijbiotech.71150

Fatia Rizki Nuraini(1), Ratna Setyaningsih(2*), Ari Susilowati(3)

(1) Department of Blood Bank Technology, Undergraduate Program, Stikes Rajekwesi Bojonegoro Jalan Raya Dander, Ngumpak Dalem, Dander, Bojonegoro, East Java 62171, Indonesia
(2) Department of Biology, Graduate Program, Universitas Sebelas Maret, Jl. Ir. Sutami No. 36A, Kentingan, Surakarta, Central Java 57126, Indonesia
(3) Department of Biology, Graduate Program, Universitas Sebelas Maret, Jl. Ir. Sutami No. 36A, Kentingan, Surakarta, Central Java 57126, Indonesia
(*) Corresponding Author

Abstract


The endophytic fungi that live in endemic plants are a promising bio‐prospect as the producers of antibacterial compounds. This research is aimed to evaluate the endophytic fungi antibacterial compound from Mangifera casturi. The bioactive compounds of 13 endophytic fungi were extracted using ethyl acetate and evaluated for antibacterial activity using disk diffusion assay. The minimum inhibitory concentration (MIC) was measured using the serial broth dilution method. Scanning Electron Microscopy (SEM) was used to examine cell damage because of the extract. The antibacterial compounds were then detected using GC‐MS analysis. The endophytic fungi were identified morphologically and molecularly based on ITS rDNA sequencing Among the 13 isolates, the endophytic fungi identified as Botryosphaeria rhodina AK32 produced the antibacterial compounds that exhibited the highest activity and a broad spectrum. Moreover, they were capable against resistant bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) with an MIC value of 1.56% for all the test bacteria. The mechanism of action of AK32 ethyl acetate extract seemed to affect the condition of bacterial cell walls, causing morphological alteration such as shrinkage of the cell, warted cells, and hollow cells. Based on GC‐MS, the antibacterial compounds of AK32 ethyl acetate extract were di‐n‐octyl phthalate, benzyl alcohol, high‐oleic (CAS) safflower oil, benzene acetonitrile, and benzotriazole.

Keywords


Antibacterial activity, Botryosphaeria rhodina, Endophytic fungi, Mangifera casturi, MRSA

Full Text:

PDF


References

Abd-Elnaby H, Abo-Elala G, Abdel-Raouf U, AbdElwahab A, Hamed M. 2016. Antibacterial and anticancer activity of marine Streptomyces parvus: Optimization and application. Biotechnol. Biotechnol. Equip. 30(1):180–191. doi:10.1080/13102818.2015.1086280.

Abdou R, Scherlach K, Dahse HM, Sattler I, Hertweck C. 2010. Botryorhodines A-D, antifungal and cytotoxic depsidones from Botryosphaeria rhodina, an endophyte of the medicinal plant Bidens pilosa. Phytochemistry 71(1):110–116. doi:10.1016/j.phytochem.2009.09.024.

Amalarasi LE, Jothi GJ. 2019. BCL2 Mediated Apoptotic Induction Potential of the DNOP Isolated from Pachygone ovata (POIR.) Miers Ex Hook. F. & Thomson in MCF-7 (Human Breast Carcinoma). Int. Res. J. Pharm. 10(3):190–194. doi:10.7897/2230- 8407.1003103.

Bhardwaj NR, Kumar J. 2017. Characterization of volatile secondary metabolites from Trichoderma asperellum. J. Appl. Nat. Sci. 9(2):954–959. doi:10.31018/jans.v9i2.1303.

Bills GF, Gloer JB. 2016. Biologically Active Secondary Metabolites from the Fungi. Microbiol. Spectr. 4(6):1–13. doi:10.1128/microbiolspec.funk- 0009-2016.

Boudjelal F, Zitouni A, Mathieu F, Lebrihi A, Sabaou N. 2011. Taxonomic study and partial characterization of antimicrobial compounds from a moderately halophilic strain of the genus Actinoalloteichus. Brazilian J. Microbiol. 42(3):835–845. doi:10.1590/S1517-83822011000300002.

Breijyeh Z, Jubeh B, Karaman R. 2020. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 25(6):1340. doi:10.3390/molecules25061340.

Dahham SS, Tabana YM, Iqbal MA, Ahamed MB, Ezzat MO, Majid AS, Majid AM. 2015. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 20(7):11808–11829. doi:10.3390/molecules200711808.

Deshmukh SK, Verekar SA, Bhave SV. 2014. Endophytic fungi: A reservoir of antibacterials. Front. Microbiol. 5(715):1–43. doi:10.3389/fmicb.2014.00715.

El-Deeb B, Fayez K, Gherbawy Y. 2013. Isolation and characterization of endophytic bacteria from Plectranthus tenuiflorus medicinal plant in Saudi Arabia desert and their antimicrobial activities. J. Plant Interact. 8(1):56–64. doi:10.1080/17429145.2012.680077.

Epand RM, Walker C, Epand RF, Magarvey NA. 2016. Molecular mechanisms of membrane targeting antibiotics. Biochim. Biophys. Acta - Biomembr. 1858(5):980–987. doi:10.1016/j.bbamem.2015.10.018.

González-Teuber M, Vilo C, Bascuñán-Godoy L. 2017. Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile. Genomics Data 11:109–112. doi:10.1016/j.gdata.2016.12.015.

Halstead FD, Rauf M, Moiemen NS, Bamford A, Wearn CM, Fraise AP, Lund PA, Oppenheim BA, Webber MA. 2015. The antibacterial activity of acetic acid against biofilm-producing pathogens of relevance to burns patients. PLoS One 10(9):1–15. doi:10.1371/journal.pone.0136190.

Hande D, Kadu S. 2015. Morphotaxonomy and gcms analysis of Memnoniella. Eur. J. Pharm. Sci. 2(4):743– 751.

Inoue Y, Togashi N, Hamashima H. 2016. Farnesolinduced disruption of the Staphylococcus aureus cytoplasmic membrane. Biol. Pharm. Bull. 39(5):653– 656. doi:10.1248/bpb.b15-00416.

Ira S, Manisha M, Singh GP. 2015. Gas chromatographymass spectrometry analysis and phytochemical screening of methanolic leaf extract of Plumbago zeylanica Linn. Int. J. Pharm. Sci. Rev. Res. 33(1):315–320.

Khairiyah N, Aspriyanto D, Putri DKT. 2019. The Antibacterial Effect of Kasturi Leaf Extract (Mangifera casturi) Against The Growth of Streptococcus mutans. Dentin J. Kedokt. Gigi 3(3):91–96.

Khameneh B, Iranshahy M, Soheili V, Fazly Bazzaz BS. 2019. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control 8(1):1–28. doi:10.1186/s13756-019-0559-6.

Kostermans A, Bompard J. 1993. The Mangoes : Their Botany, Nomenclature, Horticulture and Utilization. London: Acad. Press. Li B, Webster TJ. 2018. Bacteria antibiotic resistance: New challenges and opportunities for implantassociated orthopedic infections. J. Orthop. Res. 36(1):22–32. doi:10.1002/jor.23656.

Liu D. 2011. Molecular Detection of Human Fungal Pathogens. London: CRC Press.

Ludwig-Müller J. 2015. Plants and endophytes: equal partners in secondary metabolite production? Biotechnol. Lett. 37(7):1325–1334. doi:10.1007/s10529-015-1814-4.

Mai-Prochnow A, Clauson M, Hong J, Murphy AB. 2016. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci. Rep. 6(38610):1– 11. doi:10.1038/srep38610.

Meliana M, Sogandi S, Kining E. 2021. Uji Aktivitas Antibakteri dari Ekstrak dan Fraksi Daging Buah Mangga Kasturi (Mangifera casturi) terhadap Bakteri Pseudomonas aeruginosa dan Bacillus cereus. Bul. Penelit. Kesehat. 49(2):113–122. doi:10.22435/bpk.v49i2.4682.

Nisa H, Kamili AN, Nawchoo IA, Shafi S, Shameem N, Bandh SA. 2015. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. Microb. Pathog. 82:1–10. doi:10.1016/j.micpath.2015.04.001.

Rosyidah K, Nurmuhaimina S, Komari N, Astuti MD. 2010. Aktivitas antibakteri fraksi saponin dari kulit batang tumbuhan kasturi (Mangifera casturi). ALCHEMY 1(2):65–68. doi:10.18860/al.v0i0.1674.

Rukachaisirikul V, Arunpanichlert J, Sukpondma Y, Phongpaichit S, Sakayaroj J. 2009. Metabolites from the endophytic fungi Botryosphaeria rhodina PSU-M35 and PSU-M114. Tetrahedron 65(51):10590– 10595. doi:10.1016/j.tet.2009.10.084.

Sari DP, Aspriyanto D, Taufiqurrahman I. 2020. Antibacterial effectivity of kastury leaf extract (Mangifera casturi) against the growth of Streptococcus sanguinis bacteria. Dentino J. Kedokt. Gigi 5(1):33–38. doi:10.20527/dentino.v5i1.8118.

Sharma D, Pramanik A, Agrawal PK. 2016. Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D.Don. 3 Biotech 6(2):1–14. doi:10.1007/s13205-016-0518-3.

Silver LL. 2011. Challenges of antibacterial discovery. Clin. Microbiol. Rev. 24(1):71–109. doi:10.1128/CMR.00030-10.

Stapleton PD, Taylor PW. 2002. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Sci. Prog. 85(Pt 1):57–72. doi:10.3184/003685002783238870.

Stierle AA, Stierle DB. 2015. Bioactive secondary metabolites produced by the fungal endophytes of conifers. Nat. Prod. Commun. 10(10):1671–1682. doi:10.1177/1934578x1501001012.

Strobel G. 2018. The emergence of endophytic microbes and their biological promise. J. Fungi 4(2):1–19. doi:10.3390/jof4020057.

Strobel G, Daisy B. 2003. Bioprospecting for Microbial Endophytes and Their Natural Products. Microbiol. Mol. Biol. Rev. 67(4):491–502. doi:10.1128/mmbr.67.4.491-502.2003.

Suhendar U, Fathurrahman M, Sogandi S. 2019. Antibacterial Activity and Mechanism of Action of Methanol Extract from Kasturi Mango Fruit (Mangifera casturi) on Caries-Causing Bacterium Streptococcus mutans. J. Kim. Sains dan Apl. 22(6):235–241. doi:10.14710/jksa.22.6.235-241.

Sun X, Guo LD. 2012. Endophytic fungal diversity: Review of traditional and molecular techniques. Mycology 3(1):65–76. doi:10.1080/21501203.2012.656724.

Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J. 2013. Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii. PLoS One 8(8):1–9. doi:10.1371/journal.pone.0072520.

Takshak S, Agrawal SB. 2016. The role of supplemental ultraviolet-B radiation in altering the metabolite profile, essential oil content and composition, and free radical scavenging activities of Coleus forskohlii, an indigenous medicinal plant. Environ. Sci. Pollut. Res. 23:7324–7337. doi:10.1007/s11356-015-5965-6.

Taufiq MM, Darah I. 2019. Antibacterial activity of an endophytic fungus Lasiodiplodia pseudotheobromae IBRL OS-64 residing in leaves of a medicinal herb, Ocimum sanctum Linn. J. Appl. Biol. Biotechnol. 7(2):35–51. doi:10.7324/JABB.2019.70207.

Thiemann T. 2021. Isolation of Phthalates and Terephthalates from Plant Material – Natural Products or Contaminants? Open Chem. J. 8(1):1–36. doi:10.2174/1874842202108010001.

Tiwari K. 2015. The Future Products: Endophytic Fungal Metabolites. J. Biodiversity, Bioprospecting Dev. 02(01):1–17. doi:10.4172/2376-0214.1000145.

Trombetta D, Saija A, Bisignano G, Arena S, Caruso S, Mazzanti G, Uccella N, Castelli F. 2002. Study on the mechanisms of the antibacterial action of some plant α,β-unsaturated aldehydes. Lett. Appl. Microbiol. 35(4):285–290. doi:10.1046/j.1472- 765X.2002.01190.x.

Vollmer W, Blanot D, De Pedro MA. 2008. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32(2):149–167. doi:10.1111/j.1574- 6976.2007.00094.x.

Watanabe T. 2002. Pictorial atlas of soil and seed fungi: Morphologies of cultured fungi and key to species, second edition. London: CRC Press. doi:10.1201/9781420040821.

Wei LS, Wee W, Siong JYF, Syamsumir DF. 2011. Characterization of anticancer, antimicrobial, antioxidant properties and chemical compositions of Peperomia pellucida leaf extract. Acta Med. Iran. 49(10):670– 674.

White T, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fumhgal ribosomal RNA genes for phylogenetics. New York: Acad. Press. doi:10.1016/b978-0-12-372180-8.50042-1.

Wu Z, Xie Z, Wu M, Li X, Li W, Ding W, She Z, Li C. 2018. New Antimicrobial Cyclopentenones from Nigrospora sphaerica ZMT05, a Fungus Derived from Oxya chinensis Thunber. J. Agric. Food Chem. 66(21):5368−5372. doi:10.1021/acs.jafc.8b01376.

Yano T, Miyahara Y, Morii N, Okano T, Kubota H. 2016. Pentanol and benzyl alcohol attack bacterial surface structures differently. Appl. Environ. Microbiol. 82(1):1–7. doi:10.1128/AEM.02515-15.



DOI: https://doi.org/10.22146/ijbiotech.71150

Article Metrics

Abstract views : 2369 | views : 2087

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.