Effects of different parameters on cellulase production by Trichoderma harzianum TF2 using solid‐state fermentation (SSF)

https://doi.org/10.22146/ijbiotech.66549

Jeffrey Lim Seng Heng(1*), Halizah Hamzah(2)

(1) Biological Control Program, Agrobiodiversity and Environmental Research Centre, Malaysia Agriculture Research and Development Institute, Persiaran MARDI‐UPM, Serdang 43400, Malaysia
(2) Biological Control Program, Agrobiodiversity and Environmental Research Centre, Malaysia Agriculture Research and Development Institute, Persiaran MARDI‐UPM, Serdang 43400, Malaysia
(*) Corresponding Author

Abstract


Solid‐state fermentation is one of the easiest and cheapest methods for producing microbial bioactive com‐ pounds. Trichoderma harzianum has long been recognised as one of the potential fungi for this purpose. Trichoderma sp. were isolated from banana rhizosphere using the soil dilution method and later screened for their ability to produce cellulases using filter paper activity (FPase) and the carboxylmethyl cellulase (CMCase) test. Trichoderma sp. were also subjected to one factor change at a time to determine the effects of different parameters on cellulase production. It was observed that T. harzianum TF2 showed the ability to produce higher cellulase activity when wheat bran was used as the substrate. The results showed that 38.5 U/g of cellulase was produced with the use of wheat bran coupled with an incubation temperature of 28 °C and moisture content of 60%. T. harzianum TF2 showed good potential for use as a culture for cellulase production in this study due to its higher cellulase production under solid‐state fermentation, with the possibility of its application to industry.


Keywords


Cellulase; Compost; Microbial fermentation; Solid‐state fermentation; Trichoderma harzianum

Full Text:

PDF


References

Ali SRM, Fradi AJ, Al­Aaraji AM. 2017. Effect of some physical factors on growth of five fungal species. Eur. Acad. Res. 2(2):1069–1078. URL www.euacademic .org.

Brijwani K, Oberoi HS, Vadlani PV. 2010. Production of a cellulolytic enzyme system in mixed­culture solidstate fermentation of soybean hulls supplemented with wheat bran. Process Biochem. 45:120–128. doi:10.1016/J.PROCBIO.2009.08.015.

Darabzadeh N, Hamidi­Esfahani Z, Hejazi P. 2019. Optimization of cellulase production under solidstate fermentation by a new mutant strain of Trichoderma reesei. Food Sci. Nutr. 7:572–578. doi:10.1002/fsn3.852.

Ghose TK. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59(2):257–268. doi:10.1351/pac198759020257.

Han J, Xue Y, Li M, Li YY, Liu J, Gan LH, Long MN. 2020. Effect of VIB gene on cellulase production of Trichoderma orientalis EU7­22. Appl. Biochem. Biotechnol. 191:1444–1455. doi:10.1007/s12010­ 020­03260­7.

Haq I, Shahzadi K, Hameed U, Javed MM, Qadeer MA. 2006. Solid­state fermentation of cellulases by locally isolated Trichoderma harzianum for the exploitation of agricultural byproducts. Pak. J. Biol. Sci. 9:1779– 1782. doi:10.3923/pjbs.2006.1779.1782.

Hölker U, Lenz J. 2005. Solid­state fermentation — are there any biotechnological advantages? Curr. Opin. Microbiol. 8(3):301–306. doi:https://doi.org/10.1016/j.mib.2005.04.006. Ecology and industrial microbiology/Edited by Sergio Sánchez and Betty Olson · Techniques/Edited by Peter J Peters and Joel Swanson.

Iqbal HMN, Asgher M, Ahmed I, Hussain S. 2010. Media optimization for hyper­production of carboxymethyl cellulase using proximally analyzed agro­industrial residue with Trichoderma harzianum under SSF. Int. J. Agro Vet. Med. Sci. 4(2):47–55.

Irfan M, Nadeem M, Syed Q. 2014. One­factor­ata­time (OFAT) optimization of xylanase production from Trichoderma viride­IR05 in solid­state fermentation. J. Radiat. Res. Appl. Sci. 7:317–326. doi:10.1016/J.JRRAS.2014.04.004.

Kittanan T, Nareerat L, Sawwanit K, Teerin C. 2018. Uses of copra waste and wheat bran for cellulase production by Trichoderma reesei in solid state fermentation. ACM Int. Conf. Proceeding Ser. p. 56–59. doi:10.1145/3180382.3180392.

Kumar V, Shahid M, Srivastava M, Singh A, Pandey S, Maurya MK. 2015. Screening of Trichoderma species for virulence efficacy on seven most predominant phytopathogens. African J. Microbiol. Res. 9(11):793–799. doi:10.5897/ajmr2014.7342.

Liu J, Yang J. 2007. Cellulase production by Trichoderma koningii AS3.4262 in solid­state fermentation using lignocellulosic waste from the vinegar industry. Food Technol. Biotechnol. 45(4):420– 425. URL https://www.ftb.com.hr/images/pdfarticle s/2007/October­December/45­420.pdf.

Lu Y, Chen C, Chen H, Zhang J, Chen W. 2012. Isolation and identification of endophytic fungi from Actinidia macrosperma and investigation of their bioactivities. Evid. Based Complementary Altern. Med. 2012:8. doi:10.1155/2012/382742.

Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 31(3):426–428. doi:10.1021/ac60147a030.

Nochur SV, Roberts MF, Demain AL. 1993. True cellulase production by Clostridium thermocellum grown on different carbon sources. Biotechnol. Lett. 15(6). doi:10.1007/BF00138556.

Pandey S, Shahid M, Srivastava M, Sharma A, Singh A, Kumar V, Gupta SJ. 2014. Chitinolytic assay for Trichoderma species isolated from different geographical locations of Uttar Pradesh. African J. Biotechnol. 13(45). doi:10.5897/ajb2014.14104.

Pandey S, Srivastava M. 2015. Trichoderma species cellulases produced by solid state fermentation. J. Data Min. Genomics Proteomics 6(2):170. doi:10.4172/2153­0602.1000170.

Qiagen. 2020. Isolation of genomic DNA from fungi (culture and blood) using QIAamp DNA Mini Kit. Qiagen June. URL https: //www.qiagen.com/au/resources/resourcedetail?id=8ce3e789­478c­47d7­a8ed­2a00731fb085&lang= en.

Rahnama N, Mamat S, Shah UKM, Ling FH, Rahman NAA, Ariff AB. 2013. Effect of alkali pretreatment of rice straw on cellulase and xylanase production by local Trichoderma harzianum SNRS3 under solid state fermentation. Bioresources 8(2):2881–2896. URL https://ojs.cnr.ncsu.edu/index.php/BioRes/arti cle/view/BioRes_08_2_2881_Rahnama_Alkali_Pre treatment_Rice_Straw.

Sachdev S, Singh A, Singh RP. 2018. Optimization of culture conditions for mass production and bioformulation of Trichoderma using response surface methodology. 3 Biotech 8:360. doi:10.1007/s13205­ 018­1360­6.

Sari PD, D AB, Rahadi JBW. 2013. Optimization of cellulase enzyme production from Trichoderma reesei and Aspergillus niger with rice straw as substrate. Int. J. Acad. Res. 5:33–38. doi:10.7813/2075­4124.2013/5­ 4/a.5.

Singh A, Shahid M, Srivastava M, Pandey S, Sharma A, Kumar V. 2014. Optimal physical parameters for growth of Trichoderma species at varying pH, temperature and agitation. Virol. Mycol. 3:127. doi:10.4172/2161­0517.1000127.

Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A. 2010. Advancement and comparative profiles in the production technologies using solidstate and submerged fermentation for microbial cellulases. Enzyme Microb. Technol. 46(7):541–549. doi:10.1016/J.ENZMICTEC.2010.03.010.

Tambichik MA, Mohamad N, Samad AA, Bosro MZ, Iman MA. 2018. Utilization of construction and agricultural waste in Malaysia for development of Green Concrete: A Review. In: IOP Conf. Ser. Earth Environ. Sci., volume 140. p. 12134. doi:10.1088/1755­ 1315/140/1/012134.

Triwahyuni E, Aristiawan Y, Ariani N, Abimanyu H, Anindyawati T. 2018. The evaluation of substrates and Trichoderma sp. isolates for cellulase production. J.Kim.Terap.Indones. 20(1):42–48. URL https://inaj ac.lipi.go.id/index.php/InaJAC/article/view/384/437.

Wang H, Zhai L, Geng A. 2020. Enhanced cellulase and reducing sugar production by a new mutant strain Trichoderma harzianum EUA20. J. Biosci. Bioeng. 129(2):242–249. doi:https://doi.org/10.1016/j.jbiosc.2019.08.016.

Wen Z, Liao W, Chen S. 2005. Production of cellulase/β­glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure. Process Biochem. 40:3087–3094. doi:10.1016/J.PROCBIO.2005.03.044.

Zhang J, Yang Q. 2015. Optimization of solid­state fermentation conditions for Trichoderma harzianum using an orthogonal test. Genet Mol Res. 14(1):1771– 1781. doi:10.4238/2015.March.13.4.



DOI: https://doi.org/10.22146/ijbiotech.66549

Article Metrics

Abstract views : 2123 | views : 2358

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.