Expression profiling of the CHS8, CHI1A, IFS2, and CHR genes in black soybean seed [Glycine max (L). Merr.] of F4 generation

https://doi.org/10.22146/ijbiotech.51888

Dadang Sumardi(1*), Aulia Marwah Mumtaza(2), Rijanti Rahaju Maulani(3), Adi Pancoro(4), Husna Nugrahapraja(5), Sony Suhandono(6), Tati Suryati Syamsudin(7), Agung Kurniawan(8)

(1) School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, Indonesia 40132
(2) School of Life Sciences and Technology, Insttut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132
(3) School of Life Sciences and Technology, Insttut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132
(4) School of Life Sciences and Technology, Insttut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132
(5) School of Life Sciences and Technology, Insttut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132
(6) School of Life Sciences and Technology, Insttut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132
(7) School of Life Sciences and Technology, Insttut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132
(8) School of Life Sciences and Technology, Insttut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132
(*) Corresponding Author

Abstract


Black soybean [Glycine max (L.) Merr.] produces isoflavones as secondary metabolites, which have many benefits for human health and plant defense system. Expression profiling can guide potential work in functional genomics of the isoflavone biosynthesis pathway. Previous studies showed the vital role of the CHS8, CHI1A, and IFS2 genes in isoflavone biosynthesis. However, expression profiling of these genes in the local black soybean varieties is still limited. This study investigated the gene expression levels of the CHS8, CHI1A, IFS2, and CHR genes in local varieties, namely, UP106 (high isoflavone) and UP122 (low isoflavone) and its progenies, i.e., UP106xUP122 and UP122xUP106. Relative gene expression profiling was conducted on the basis of Reverse Transcriptase Polymerase Chain Reaction (RT‐PCR) with ACT2/7 as a housekeeping gene. As a result, the expression level of CHS8 in UP122 is lower than that in UP106. No significant difference in the expression level of CHI1A was observed in all samples. The expression levels of CHS8 and CHI1A in both progenies were higher than that in the parental line, whereas the expression levels of IFS2 in both progenies were lower than that in the parental line. CHS8 and IFS2 expression from UP106xUP122 was higher than that from UP122xUP106, whereas CHI1A expression from UP122xUP106 was higher than that from UP106xUP122. CHR showed a high expression in the reciprocal cross; however, this expression did not exceed from UP106. In conclusion, the crossing between parental lines did not affect the gene expression level in the isoflavone biosynthesis pathway.

Keywords


black soybeans; isoflavone; local varieties; biosynthesis pathway; reverse transcriptase PCR

Full Text:

PDF


References

Akada S, Kung SD, Dube SK. 1993. Nucleotide sequence and putative regulatory elements of a nodule­development­specific member of the soybean (Glycine max) chalcone synthase multigene family, Gmchs 7. Plant Physiol 102(1):321–323.

Cheng B, Furtado A, Smyth HE, Henry RJ. 2016. Influence of genotype and environment on cof­ fee quality. Trends Food Sci Technol 57:20–30. doi:10.1016/j.tifs.2016.09.003.

Chiari L, Koshy Naoe L, Piovesan ND, Chamel José I, Damião Cruz C, Alves Moreira M, Gonçalves De Barros E. 2006. Inheritance of isoflavone con­ tents in soybean seeds. Euphytica 150(1­2):141–147. doi:10.1007/s10681­006­9102­y.

Christie JM, Jenkins GI, Christie JM, Jenkins GI. 1996. Distinct UV­B and UV­A/blue light signal transduc­ tion pathways induce chalcone synthase gene expres­ sion in Arabidopsis cells. Plant Cell 8(9):1555–1567. doi:10.2307/3870250.

Dajanta K, Janpum P, Leksing W. 2013. Antioxidant ca­ pacities, total phenolics and flavonoids in black and yellow soybeans fermented by Bacillus subtilis: A comparative study of Thai fermented soybeans (thua nao). Int Food Res J 20(6):3125–3132.

Dhaubhadel S. 2011. Regulation of Isoflavonoid Biosyn­ thesis in Soybean Seeds. In: TB Ng, editor, Soybean ­ Biochemistry, Chemistry and Physiology, pages 243–358. Canada: IntechOpen. doi:10.5772/15120.

Dhaubhadel S, Gijzen M, Moy P, Farhangkhoee M. 2007. Transcriptome analysis reveals a critical role of CHS7 and CHS8 genes for isoflavonoid synthe­ sis in soybean seeds. Plant Physiol 143(1):326–338. doi:10.1104/pp.106.086306.

Dixon RA. 2004. Phytoestrogens. Annu Rev Plant Biol 55:225–261. doi:10.1146/annurev.arplant.55.031903.141729.

Fritze K, Staiger D, Czaja I, Walden R, Schell J, Wing D. 1991. Developmental and UV light regulation of the snapdragon chalcone synthase promoter. Plant Cell 3(9):893–905. doi:10.1105/tpc.3.9.893.

Gutierrez­Gonzalez JJ, Guttikonda SK, Tran LSP, Aldrich DL, Zhong R, Yu O, Nguyen HT, Sleper DA. 2010. Differential expression of isoflavone biosynthetic genes in soybean during water deficits. Plant Cell Physiol 51(6):936–948. doi:10.1093/pcp/pcq065.

Juenger TE, Sen S, Bray E, Stahl E, Wayne T, Mckay J, Richards JH. 2010. Exploring genetic and expression differences between physiologically ex­ treme ecotypes: Comparative genomic hybridiza­ tion and gene expression studies of Kas­1 and Tsu­1 accessions of Arabidopsis thaliana. Plant, Cell Environ 33(8):1268–1284. doi:10.1111/j.1365­ 3040.2010.02146.x.

Jung W, Yu O, Lau SMC, O’Keefe DP, Odell J, F G, Mc­ Gonigle B. 2000. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol 18(2):208– 212. doi:10.1038/72671.

Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, et al. 2010. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42(12):1053–1059. doi:10.1038/ng.715.

Marioni JC, Mason CE, Mane SM, Stephens M, Gi­ lad Y. 2008. RNA­seq: An assessment of tech­ nical reproducibility and comparison with gene ex­ pression arrays. Genome Res 18(9):1509–1517. doi:10.1101/gr.079558.108.

Maston GA, Evans SK, Green MR. 2006. Tran­ scriptional Regulatory Elements in the Human Genome. Annu Rev Genomics Hum Genet 7:29–59. doi:10.1146/annurev.genom.7.080505.115623.

McKay JK, Richards JH, Mitchell­Olds T. 2003. Genet­ ics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits. Mol Ecol 12(5):1137–1151. doi:10.1046/j.1365­294X.2003.01833.x.

Park HB, Jacobsson L, Wahlberg P, Siegel PB, Andersson L. 2006. QTL analysis of body composition and metabolic traits in an inter­ cross between chicken lines divergently selected for growth. Physiol Genomics 25(2):216–223. doi:10.1152/physiolgenomics.00113.2005.

Ramandhani MR. 2014. Penerapan Pattern Matching dalam Penentuan Pewarisan Sifat Genetis Tetua pada Anaknya. URL http://informatika.stei.itb.ac.id/{~}r inaldi.munir/Stmik/2013-2014/Makalah2013/MakalahIF2211­2013­029.pdf.

Sheffield JB. 2008. An Introduction to ImageJ: A Useful Tool for Biological Image Processing and Analysis. Microscopy and Microanalysis doi:DOI: 10.1017/S1431927608088752.

Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP, Beazley C, Ingle CE, Dunning M, Flicek P, Koller D, et al. 2007. Population genomics of human gene expression. Nat Genet 39(10):1217–1224. doi:10.1038/ng2142.

Veyrieras JB, Kudaravalli S, Kim SY, Dermitzakis ET, Gilad Y, Stephens M, Pritchard JK. 2008. High­ resolution mapping of expression­QTLs yields in­ sight into human gene regulation. PLoS Genet 4(10):e1000214. doi:10.1371/journal.pgen.1000214.

Xu B, Chang SKC. 2008. Antioxidant capacity of seed coat, dehulled bean, and whole black soybeans in re­lation to their distributions of total phenolics, pheno­ lic acids, anthocyanins, and isoflavones. J Agric Food Chem 56(18):8365–8373. doi:10.1021/jf801196d.

Yu O, Shi J, Hession AO, Maxwell CA, McGonigle B, Odell JT. 2003. Metabolic engineering to in­ crease isoflavone biosynthesis in soybean seed. Phy­ tochemistry 63(7):753–763. doi:10.1016/S00319422(03)00345­5.

Zeyl C, Andreson B, Weninck E. 2005. Nuclear­ mitochondrial epistasis for fitness in Saccha­ romyces cerevisiae. Evolution 59(4):910–914. doi:10.1111/j.0014­3820.2005.tb01764.x.



DOI: https://doi.org/10.22146/ijbiotech.51888

Article Metrics

Abstract views : 3455 | views : 2283

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.