The characterization of bacteriocins produced by Lactobacillus plantarum strains isolated from traditional fermented foods in Indonesia and the detection of its plantaricin-encoding genes
Sogandi Sogandi(1*), Apon Zaenal Mustopa(2), I Made Artika(3)
(1) Faculty of Pharmacy, 17 Augustus 1945 University, Jakarta 14350, Indonesia
(2) Research Center for Biotechnology-Indonesia Institute for Science (LIPI), Cibinong 16911 Bogor, Indonesia
(3) Department of Biochemistry, Bogor Agricultural University, Bogor 16680, Indonesia
(*) Corresponding Author
Abstract
Lactobacillus plantarum is widely found in either anaerobic plant matter or fermented foods, and it has been recognized as producing antimicrobial bacteriocins. This study aimed to characterize the antimicrobial bacteriocins of L. plantarum and detect its genes that encode plantaricins. Samples were isolated from traditional fermented foods from Indonesia. Antimicrobial activity was evaluated using the agar diffusion assay procedure. The titration method applied the maximum amounts of lactic acid at 1054 mg/mL and hydrogen peroxide at 3.85 mg/mL. Based on the results, the supernatant of the L. plantarum strains appeared to have a broad spectrum of antimicrobial activity against pathogens, which would be active at pH 2.0–12.0 and stable temperature. In addition, almost all of the L. plantarum strains contained plantaricin-encoding genes (e.g. plnA, plnF,plnJK, and plnW), which were grouped into one cluster as indicated by phylogenetic analysis. Therefore, this study discovered clear evidence of the potential of some L. plantarum strains to act as antimicrobial agents.
Keywords
Full Text:
PDFReferences
Anupama R, Balasingh A. 2018. Isolation, purification and characterisation of bacteriocin producing Lactobacillus species and its antimicrobial efficacy against food borne pathogens. Indian J Microbiol Res. 5(2):147–150. doi:10.18231/2394-5478.2018.0030.
Cho GS, Huch M, Hanak A, Holzapfel WH, Franz CM. 2010. Genetic analysis of the plantaricin EFI locus of Lactobacillus plantarum PCS20 reveals an unusual plantaricin E gene sequence as a result of mutation. Int J Food Microbiol. 141:117-124. doi:10.1016/j.ijfoodmicro.2010.02.022.
Drider D, Fimland G, Héchard Y, Lynn M. 2006. The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev. 70(2):564–582. doi:10.1128/MMBR.00016-05.
González L, Cuadrillero AF, Castro JM, Bernardo A, Tornadijo ME. 2015. Selection of lactic acid bacteria isolated from San Simón da Costa cheese (PDO) in order to develop an autochthonous starter culture. Adv Microbiol. 5:748–759. doi:10.4236/aim.2015.51107.
Holo H, Jeknic Z, Daeschel M, Stevanovic S, Nes IF. 2001. Plantaricin W from Lactobacillus plantarum belongs to a new family of two-peptide lantibiotics. Microbiology. 147(3):643–651. doi:10.1099/00221287-147-3-643.
Jiang H, Zou J, Cheng H, Fang J, Huang G. 2017. Purification, characterization, and mode of action of pentocin JL-1, a novel bacteriocin isolated from Lactobacillus pentosus, against drug-resistant Staphylococcus aureus. Biomed Res Int. 2017:1–11. doi:10.1155/2017/7657190.
Kjos M, Nes IF, Diep DB. 2009. Class II one-peptide bacteriocins target a phylogenetically defined subgroup of mannose phosphotransferase systems on sensitive cells. Microbiology. 155(9):2949–2961. doi:10.1099/mic.0.030015-0.
Konings WN, Kok J, Kuipers OP, Poolman B. 2000. Lactic acid bacteria: The bugs of the new millennium. Curr Opin Microbiol. 3(3):276–282. doi:10.1016/S1369-5274(00)00089-8.
Lelise A, Belaynesh G, Mulubrhan M, Kedija S, Endashaw B, Abebe B. 2014. Isolation and screening of antibacterial producing lactic acid bacteria from traditionally fermented drinks (“Ergo” and “Tej”) in Gondar town, Northwest Ethiopia. Global Res J PublicHealth Epidemiol. 1(3):18–22.
Leroy F, De Vuyst L. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol. 15(2):67–78. doi:10.1016/j.tifs.2003.09.004.
Mustopa AZ. 2014. Diversity of lactic acid bacteria isolated from Indonesian traditional fermented foods. Microbiol Indones. 8(2):48–57. doi:10.5454/mi.8.2.2.
Okpara AN, Okolo BN, Ugwuanyi JO. 2014. Antimicrobial activities of lactic acid bacteria isolated from akamu and kunun-zaki (cereal based non-alcoholic beverages) in Nigeria. Afr J Biotechnol. 13(29):2977– 2984. doi:10.5897/AJB12.376.
Omar B, Abriouel H, Keleke S, Sánchez A, Martínezcañamero M, Lucas R, Ortega E, Gálvez A. 2008.
Bacteriocin-producing Lactobacillus strains isolated from poto poto, a Congolese fermented maize product,
and genetic fingerprinting of their plantaricin operons. Int J Food Microbiol. 127(1–2):18–25. doi:10.1016/j.ijfoodmicro.2008.05.037.
Rizzello CG, Filannino P, Di Cagno R, Calasso M, Gobbetti M. 2014. Quorum-sensing regulation of constitutive plantaricin by Lactobacillus plantarum strains under a model system for vegetables and fruits. Appl Environ Microbiol. 80(2):777–787. doi:10.1128/AEM.03224-13.
Sáenz Y, Rojo-Bezares B, Navarro L, Díez L, Somalo S, Zarazaga M, Ruiz-Larrea F, Torres C. 2009. Genetic diversity of the pln locus among oenological Lactobacillus plantarum strains. Int J Food Microbiol. 134(3):176–183. doi:10.1016/j.ijfoodmicro.2009.06.004.
Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 4(4):406–425. doi:10.1093/oxfordjournals.molbev.a040454.
Stackebrandt E, Goebel BM. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol. 44(4):846–849. doi:10.1099/00207713-44-4-846.
Sukmarini L, Mustopa AZ, Normawati M, Muzdalifah I. 2014. Identification of antibiotic-resistance genes from lactic acid bacteria in indonesian fermented foods. HAYATI J Biosci. 21(3):144–150. doi:10. 4308/hjb.21.3.144.
Teixeira L, Rosa D, Brandelli A. 2013. Characterization of an antimicrobial peptide produced by Bacillus subtilis subsp. spizezinii showing inhibitory activity towards Haemophilus parasuis. Microbiology. 159(5):980–988. doi:10.1099/mic.0.062828-0.
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25(24):4876–4882. doi:10.1093/nar/25.24.4876.
Xie Y, An H, Hao Y, Qin Q, Huang Y, Luo Y, Zhang L. 2011. Characterization of an anti-Listeria bacteriocin produced by Lactobacillus plantarum LB-B1 isolated from koumiss, a traditionally fermented dairy product from China. Food Control. 22(7):1027–1031. doi:10. 1016/j.foodcont.2010.12.007.
Zhou F, Zhao H, Bai F, Dziugan P, Liu Y, Zhang B. 2014. Purification and characterisation of the bacteriocin produced by Lactobacillus plantarum, isolated from Chinese pickle. Czech J Food Sci. 32(5):430– 436. doi:10.17221/270/2013-CJFS.
Zhu H, Qu F, Zhu LH. 1993. Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res. 21(22):5279–5280. doi:10.1093/nar/21.22.5279.
Zhu J, Adli M, Zou JY, Verstappen G, Coyne M, Zhang X, Durham T, Miri M, Deshpande V, De Jager PL, Bennett DA. 2013. Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell. 152(3):642–654. doi:10.1016/j.cell.2012.12.033.
DOI: https://doi.org/10.22146/ijbiotech.42582
Article Metrics
Abstract views : 5633 | views : 4114Refbacks
- There are currently no refbacks.
Copyright (c) 2019 The Author(s)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.