Fermentation Products, Microbial Protein Synthesis, and Hydrolytic Enzymes Activity of Rumen Fluids Local Beef Cattle Supplemented by Direct-Fed Microbials and Waru Leaf Flour

https://doi.org/10.21059/buletinpeternak.v48i2.90556

Dhany Nursetiyadi(1), Muhammad Bata(2), Sri Rahayu(3*)

(1) Graduate School of Magister Agricultural Biotechnology, University of Jenderal Soedirman, Purwokerto, 53125
(2) Magister Agricultural Biotechnology, University of Jenderal Soedirman, Purwokerto, 53125
(3) Magister Agricultural Biotechnology, University of Jenderal Soedirman, Purwokerto, 53125
(*) Corresponding Author

Abstract


The aim of this study was to evaluate the effect of Waru Leaf Flour  (WLF) and Direct-Fed Microbials (DFM) supplementation on volatile fatty acid (VFA) and ammonia (N-NH3) concentrations, total protozoa, microbial protein synthesis (MPS), and the specific activity of cellulase, amylase, protease in rumen fluids of local beef cattle. The study was conducted as an experimental investigation using a factorial Completely Randomized Design (FCRD). The first factor were three levels of DFM (P) mixed with rice straw (0%, 0.5%, and 1% dry matter of rice straw). The second factor consisted of three levels of WLF supplementation (D) in concentrates (0%, 0.24%, and 0.48% of dry matter concentrate). This resulted nine treatment groups, each it replicated three times.The diet composition consisted of rice straw and concentrate at 40:60 ratio (% dry matter). The interaction between DFM and WLF had a statistically significant impact (p<0.01) on the rumen fluid's total protozoa, N-NH3, and protein content. However, this interaction was not statistically significant (P>0.05) in relation to VFA, MPS, cellulase, amylase, and protease activity. While no significant interaction were observed for total VFA, cellulase, amylase, and protease, DFM supplementation had a statistically significant effect (P<0.01) on reducing enzymes activity, and total VFA (P<0.05). SDS-PAGE and zymography analyzes showed two protease molecules at all treatments with molecular weight of 144 kDa and 133 kDa, cellulase molecules at 62-67 kDa and 19-21 kDa respectively. The addition of DFM showed a new protease band, they had a measurement of 14 and 25 kDa.This study provides valuable insights into enzyme activities in rumen, particularly protease, cellulase, and amylase. The results suggest that the combination of 0.24% WLF and 0.5% DFM supplementation holds promise for optimizing rumen conditions and improving the performance of local beef cattle.


Keywords


DFM; Enzymes; Hibiscus; Metabolic-products; Rumen-fluids

Full Text:

7. Sri Rahayu


References

Afdal, M. and E. Erwan 2013. Penggunaan feses sebagai pengganti cairan rumen pada teknik in vitro: Estimasi kecernaan bahan kering dan bahan organic beberapa jenis rumput. Jurnal Peternakan 10: 14-20.

Antonius, A., R. Pazla, E. M. Putri, W. Negara, N. Laia, M. Ridla, S. Suharti, A. Jayanegara, S. Asmairicen, L. Marlina, and Y. Marta. 2023. Effectiveness of herbal plants on rumen fermentation, methane gas emissions, in vitro nutrient digestibility, and population of protozoa. Vet. World. 16: 1477-1488.

Arboleda, J. W. and M. Fa. 2007. Detection of a -amylase inhibitors by a zymography method, performed in isoelectric focusing electrophoretic. PhastGels. 366: 113–115.

Azzaz, H. H., T. A. Morsy, and H. A. Murad. 2016. Microbial feed enhancement supplements for ruminant ’s performance enchacement. Asian J. Agric. Res. 10: 1–14.

Badan Pusat Statistik (BPS). 2023. Populasi, produksi daging dan konsumsi daging sapi Indonesia 2020-2022. https://www.bps. go.id/.

Bata, M. and S. Rahayu. 2017. Evaluation of bioactive substances in Hibiscus tiliaceus and its potential as a ruminant feed additive. Curr. Bioactive Compounds. 13: 157–164.

Bata, M., S. Rahayu, and N. Hidayat. 2016. Performan Sapi Sumba Ongole (SO) yang diberi jerami padi amoniasi dan konsentrat yang disuplementasi dengan tepung daun waru (Hibiscus tiliaceus). Agripet 16: 106–113.

Bata, M., S. Rahayu, and M. Oktora. 2021. Efisiensi metabolisme rumen pakan berbasis jerami padi amoniasi dan konsentrat yang disuplementasi ekstrak daun waru (Hibiscus tiliaceus) (in-vitro). Agripet 21: 113–121.

Bekuma, A. 2019. Rumen manipulation: One of the promising strategies to improve livestock productivity-review. J. Dairy Vet. Sci. 9: 555758

Bollag, D. M. and S. J. Edelstein. 1996. Protein Methods. 2nd. John Wiley & Sons Inc. New York.

Bernfeld, P. 1955. Amylases, alpha and beta. Methods in Enzymol. 1: 149-152. http://dx.doi.org/10.1016/0076-6879(55)01021-5

Bressollier, P., F. Letourneau, M. Urdaci, and B. Verneuil. 1999. Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus. Appl. Environ. Microbiol. 65: 2570-2576.

Budiansyah, A., U. Haroen, A. Insulistyowati, and Syafwan. 2022. The use of hydrolyzed palm kernel cake after addition by buffalo rumen fluid enzymes on growth performances and relatively organ weight of broilers. Buletin Peternakan 46: 160-168.

Camassola, M. and J. P. A. Dillon. 2012. Cellulase determination: Modifications to make the filter paper assay easy, fast, practical and efficient. Open Acces Scientific Reports 1: 125.

Conway, E. J. and E. O’Malley. 1942. Microdiffusion methods: ammonia and urea using buffered absorbents (revised methods for ranges greater than 10 μg N). Biochem. J. 36: 655-661.

Dawes, E. A. and W. H. Holms. 1957. Metabolism of Sarcina lutea. J. Bacteriol. 75: 390–399.

Gong, X., R. J. Gruninger, M. Qi, L. Paterson, R. J. Forster, R. M.Teather, and T. A. McAllister. 2012. Cloning and identification of novel hydrolase genes from a dairy cow rumen metagenomic library and characterization of a cellulase gene. BMC Res. Notes 5: 566-576.

Hanum, T. A. and W. Setyari. 2018. Analisis impor daging sapi di Indonesia tahun 2000 - 2015. E-Jurnal Ekonomi Pembangunan 7: 1587–1825.

Junaidi, Y., A. Pertiwiningrum, Y. Erwanto, and N. A. Fitriyanto. 2017. Semi purification and identifications molecule protein weigh of alkaline protease enzyme from Bacillus cereus LS2B. Internat. J. Biosci. Biotechnol. 9: 89–100.

Króliczewska, B., E. Pecka-Kiełb, and J. Bujok. 2023. Strategies used to reduce methane emissions from ruminants: Controversies and issues. Agriculture 13: 602.

Kroman, R. P., J. H. Meyer, and W. J. Stielau.1967. Steam distillation of volatile fatty acids in rumen digesta. J. Dairy Sci. 50: 73-76.

Kulkarni, N., A. Shendye, and M. Rao. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23: 411–456.

Lakshmi, B. K. M., D. M. Kumar, and K. P. J. Hemalatha. 2018. Purification and characterization of alkaline protease with novel properties from Bacillus cereus strain S8. J. Gen. Eng. Biotechnol. 16: 295–304.

Malmuthuge, N. and L. L. Guan. 2017. Understanding host-microbial interactions in rumen: Searching the best opportunity for microbiota manipulation. J. Anim. Sci. Biotechnol. 8: 1–7.

McAllister, T. A., K. A. Beauchemin, A. Y. Alazzeh, J. Baah, R. M. Teather, and K. Stanford. 2011. Review : The use of direct fed microbials to mitigate pathogens and enhance production in cattle. Can. J. Anim. Sci. 91: 193-211.

McDonald, P., R. A. Edward, and J. F. O. Greenhalgh. 2002. Animal Nutrition. 6th Ed. Longman Scientific & Technical. John Willey & Sons. Inc, New York.

McMurphy, C. P., G. C. Duff, S. R. Sanders, S. P. Cuneo, and N. K. Chirase. 2011. Effects of supplementing humates on rumen fermentation in Holstein steers. South African J. Anim. Sci. 41: 134–140.

Mehrzad, J., C. Desrosiers, K. Lauzon, G. Robitaille, X. Zhao, and P. Lacasse. 2005. Proteases involved in mammary tissue damage during endotoxin-lnduced mastitis in dairy cows. J. Dairy Sci. 88: 211–222.

Ngadiyono, N., E. Baliarti,T. S. M. Widi, H. Maulana, and B. A. Atmoko. 2019.Effect of breed and initial body weight on daily weight gain of Simmental Ongole crossbred cattle and Ongole grade cattle. IOP Conf. Series: Earth and Environ. Sci. 387: 1-4.

Ogimoto, K. and S. Imai. 1981. Atlas of Rumen Microbiology. First Ed. Japan Scientific Society Press. Tokyo.

Patra, A. K. and J. Saxena. 2009. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutr. Res. Rev. 22: 204–219.

Philippeau, C., A. Lettat, C. Martin, M. Silberberg, D. P. Morgavi, A. Ferlay,C. Berger, and P. Nozière. 2017. Effects of bacterial direct-fed microbials on ruminal characteristics, methane emission, and milk fatty acid composition in cows fed high- or low-starch diets. J. Dairy Sci. 100: 2637–2650.

Rajak, R. A. M. C. 2005. An improved zymographic method for detection of amylolytic enzymes of fungi on polyacrylamide gels. Mycologist 19: 138–140.

Ramdani, D., Marjuki, and S. Chuzaemi. 2017. Pengaruh perbedaan jenis pelarut dalam proses ekstraksi buah mengkudu (Morinda citrifolia L.) pada pakan terhadap viabilitas protozoa dan produksi gas in-vitro. JIIP 27: 54 -62.

Rangubhet, K. T., M. C. Mangwe, V. Mlambo, Y. K. Fan, and H. I. Chiang. 2017. Enteric methane emissions and protozoa populations in Holstein steers fed spent mushroom (Flammulina velutipes) substrate silage-based diets. Anim. Feed Sci. Technol. 234: 78-87.

Santoso, S. E., L. Soesanto, and T. A. D. Haryanto. 2007. Penekanan hayati penyakit moler pada bawang merah dengan Trichoderma harzianum, Trichoderma koningii, dan Pseudomonas P60. J. HPT Tropika. 7: 53–61.

Singh, S. K., S. K. Singh, V. R. Tripathi, and S. K. Garg. 2012. Purification, characterization and secondary structure elucidation of a detergent stable, halotolerant, thermoalkaline protease from Bacillus cereus SIU1. Process Biochem. 47: 1479–1487.

Steel, R. G. D., J. H. Torrie, and D. A. Dicky. 1997. Principles and Procedures of Statistics, A Biometrical Approach. 3rd Edn. McGraw Hill, Inc. Book Co., New York.

Suryani, H., M. Zain, N. Jamarun, and R. W. S. Ningrat. 2015. Peran direct fed microbials (DFM) Saccharomyces cerevisiae dan Aspergillus oryzae terhadap produktivitas ternak ruminansia : Review. Indonesian J. Anim. Sci. 17: 27.

Susanti, S. and E. Marhaeniyanto. 2014. Kadar saponin daun tanaman yang berpotensi menekan gas metana secara in-vitro. Buana Sains 14: 29–38.

Tilley, J. M. A., and R. A. Terry. 1963. A two-stage technique for the in vitro digestion of forage crops. J. Br. Grassl. Soc. 18: 104-111.

Wangi, L., W. Busono, and M. Nasich. 2017. The effect of different seasons and land types towards the performance of Bali cattle production in Southeast Sulawesi. Res. J. Life Sci. 4: 168-178.

Walter, H. E. 1984. Proteinases (protein as substrates). Method with haemoglobin, casein and azocoll as substrate. In: Methods of Enzymatic Analysis. J. Bergmeyer and M. Grassl (ed). 3rd Ed. Weinheim: Verlag Chemie. pp. 270-278.

Widyawati, S. D., S. F. Silalahi, and I. Astuti. 2017. Efektivitas daun kembang sepatu sebagai agensia defaunasi dalam pakan konsentrat tinggi menggunakan jenis hijauan berbeda pada kecernaan nutrien kambing Kacang. Sains Pet. 15: 87–91.

Wiryawan, K. G., A. Saefudin, A. M. Fuah, R. Priyanto, L. Khotijah, and S. Suharti. 2017. Fermentation characteristics and nitrogen retention of Madura cattle fed complete rations containing soybean pod and by-products. Media Peternakan 40: 28-34.

Zinn, R. A. and F. V. Owens. 1995. A rapid prosedure purine measurement and its use for estimating net ruminant protein synthesis. Can. J. Anim. Sci. 66: 157-166.



DOI: https://doi.org/10.21059/buletinpeternak.v48i2.90556

Article Metrics

Abstract views : 760 | views : 427

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Buletin Peternakan (Bulletin of Animal Science) Indexed by:

   
 
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.