Pemodelan dan Simulasi untuk Rancangan Polimer Tercetak Molekul Brazilein dengan Asam Metakrilat sebagai Monomer Fungsional



Faqih Abdurrahman(1), Iqmal Tahir(2*), Mukhammad Fajar Pradipta(3)

(1) Laboratory of Physical Chemistry, Department of Chemistry, Universitas Gadjah Mada
(2) Laboratory of Physical Chemistry, Department of Chemistry, Universitas Gadjah Mada
(3) Laboratory of Physical Chemistry, Department of Chemistry, Universitas Gadjah Mada
(*) Corresponding Author

Abstract


Penelitian mengenai rancangan sintesis polimer tercetak molekul brazilein dengan metode komputasi menggunakan pemodelan dan simulasi dinamika molekular telah dilakukan. Tujuan dari penelitian ini yaitu untuk mengetahui rasio optimum brazilein:asam metakrilat serta mempelajari dinamika ikatan hidrogen yang terjadi selama proses sintesis. Kajian pemodelan menggunakan perhitungan mekanika kuantum DFT/B3LYP dengan basis set 6-31G(d) sedangkan simulasi dinamika molekular menggunakan AMBER. Hasil perhitungan mekanika kuantum kompleks brazilein dengan asam metakrilat menunjukkan rasio optimum kompleks adalah 1:4 dengan energi interaksi sebesar -47,247 kkal/mol. Hasil simulasi dinamika molekular menunjukkan interaksi efektif hanya terjadi pada 3 asam metakrilat dengan nilai persen okupansi ikatan hidrogen tertinggi sebesar 44,30% pada jarak 2,835 Å dan sudut ikat 32,05º. Dari perbandingan hasil kedua metode komputasi, rasio optimum yang direkomendasikan untuk sintesis adalah 1:3 (brazilein:asam metakrilat).


Full Text:

PDF


References

Amrullah, A., 2017, Simulasi Dinamika Molekular Untuk Rancangan Polimer Tercetak Molekul Senyawa Kuersetin, Skripsi, Departemen Kimia, Fakultas Matemarika dan Ilmu Pengetahuan Alam, Universitas Gadjah Mada, Yogyakarta.

Chianella, I., Lotierzo, M., Piletsky, S.A., Tothill, I.E., Chen, B., Karim, K., and Turner, A.P.F., 2002, Rational Design of a Polymer Specific for Microcystin-LR Using a Computational Approach, Anal. Chem., 74(6), 1288-1293.

Handayani, S., Susidarti, R.A., Udin, Z., Meiyanto, E., and Jenie, R.I., 2016, Brazilein in Combination with Cisplatin Inhibit Proliferation and Migration on Highly Metastatic Cancer Cells, 4T1, Indones. J. Biotechnol., 21(1), 38-47.

Hsieh, C., Tsai, P., Chu, C., Chang, F., Chang, L., Wu, Y., and Lin, S., 2013, Brazilein Suppresses Migration and Invasion of MDA-MB-231 Breast Cancer Cells, Chem. Biol. Interact., 204, 105–115.

Huang, Y., and Zhu, Q., 2015, Computational Modeling and Theoretical Calculations on the Interactions between Spermidine and Functional Monomer (Methacrylic Acid) in a Molecularly Imprinted Polymer, J. Chem., 216983, 1-9.

Karlsson, B.C.G., O’Mahony, J., Karlsson, J.G., Bengtsson, H., Eriksson, L.A., and

Nicholls, I.A., 2009, Structure and Dynamics of Monomer-Template Complexation: An Explanation for Molecularly Imprinted Polymer Recognition Site Heterogeneity, J. Am. Chem. Soc., 131(37), 13297-13304.

Khan, S., Bhatia, T., Trivedi, P., Satyanarayana, G.N.V., Mandrah, K., Saxena, P.N., Mudiam, M.K.R., and Roy, S.K., 2016, Selective Solid-Phase Extraction using Molecularly Imprinted Polymer as A Sorbent for the Analysis of Fenarimol in Food Samples, Food Chem., 199, 870-875.

Kong, Y., Wang, N., Ni, X., Yu, Q., Liu, H., Huang, W., and Xu, W., 2016, Molecular Dynamics Simulations of Molecularly Imprinted Polymer Approaches to the Preparation of Selective Materials to Remove Norfloxacin, J. Appl. Polym. Sci., 133(1), 1-11.

Luo, D., Zhaob, Z., Zhanga, L., Wang, Q., and Wang, J., 2014, On the Structure of Molecularly Imprinted Polymers by Modifying Charge on Functional Groups through Molecular Dynamics Simulations, Mol. Simul., 40(6), 431-438.

Nirmal, N.P., Rajput, M.S., Prasad, R.G.S.V., and Ahmad, M., 2015. Brazilin from Caesalpinia sappan Heartwood and Its Pharmacological Activities: A Review, Asian Pac. J. Trop. Med., 8(6): 421–430.

Olcer, Y.A., Demirkurt, M., Demirb, M.M., and Eroglu, A.E., 2017, Development of Molecularly Imprinted Polymers (MIPs) as A Solid-Phase Extraction (SPE) Sorbent for the Determination of Ibuprofen in Water, RSC Adv., 7, 31441-31447.

Pardeshi, S., Patrikar, R., Dhodapkar, R., and Kumar, A., 2012, Validation of Computational Approach to Study Monomer Selectivity toward the Template Gallic Acid for Rational Molecularly Imprinted Polymer Design, J. Mol. Model., 18(11), 4797-4810.

Prasetyo, N., Tahir, I., Sudiono, S., and Setiaji, B., 2016, Computational Studies on Prepolymerization of Selective Molecular Imprinted Polymer Based on Caffeine, Proceeding, The 5th International Conference of the Indonesian Chemical Society, 30-31 Agustus 2016, Samarinda.

Riahi, S., Edris-Tabrizi, F., Javanbakht, M., Ganjali, M.R., and Norouzi, P., 2009, A Computational Approach to Studying Monomer Selectivity towards the Template in An Imprinted Polymer, J. Mol. Model., 15(7), 829-836.

Saputra, A., 2014, Aplikasi Metode DFT dan Simulasi Dinamika Molekular pada Kajian Interaksi Monomer Fungsional untuk Desain Polimer Tercetak R(+)-katinon, Tesis, Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Gadjah Mada, Yogyakarta.

Sole, R.F., Lazzoi, M.R., Arnone, M., Sala, F.D., Cannoletta, D., and Vasapollo, G., 2009, Experimental and Computational Studies on Non-Covalent Imprinted Microspheres as Recognition System for Nicotinamide Molecules, Molecules, 14, 2632-2649.

Tahir, I., Ahmad, M.N., Islam, A.K.M.S., and Arbain, D., 2012, Molecular Modeling and Experimental Study on The Interaction Between Quercetin and Methacrylic Acid, Proceeding, The 2nd International Malaysia-Ireland Joint Symposium on Engineering, Science and Business (IMiEJS 2012), Kangar.

Turner, N.W., Piletskaa, E.V., Karima, K., Whitcombeb, M., Malechaa, M., Magana, N., Baggianic, C., and Piletskya, S.A., 2004, Effect of the Solvent on Recognition Properties of Molecularly Imprinted Polymer Specific for Ochratoxin A, Biosens. Bioelectron., 20, 1060–1067.

Urraca, J.L., Carbajo, M.C., Torralvo, M.J., Gonzalez-Vazquez, J., Orellana, G., and Moreno-Bondi, M.C., 2008, Effect of the Templates and Functional Monomer on the Textural Properties of Molecularly Imprinted Polymer, Biosens. Bioelectron., 24, 155–161.

Wei, S., Jakusch, M., and Mizaikoff, B., 2007, Investigating the mechanisms of 17β-Estradiol Imprinting by Computational Prediction and Spectroscopic Analysis, Anal. Bioanal. Chem., 389, 423–431.

Widayani, W., Wungu, T.D.K., Marsha, S.E., and Suprijadi, S., 2017, Study of Target Recognition of MAA-based Molecularly Imprinted Polymer (MIP) Using Density Functional Theory (DFT) Computation on the Interaction of Methacrylic Acid (MAA)-D-Glucose, J. Polym. Biopolym. Phys. Chem., 5(1), 10-12.

Wiratama, A.D., 2016, Pemodelan Molekul Berdasarkan Metoda Perhitungan Semiempirik AM1 untuk Sintesis Polimer Tercetak Molekul Asam Kafeat, Skripsi, Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Gadjah Mada, Yogyakarta.

Wojnarowicz, A., Sharma, P.S., Sosnowska, M., Lisowski, W., Huynh, T.P., Pszona, M., Borowicz, P., D’Souza, F., and Kutnera, W., 2016, An Electropolymerized Molecularly Imprinted Polymer for Selective Carnosine Sensing with Impedimetric Capacity, J. Mater. Chem. B, 4(6), 1156-1165.

Wungu, T.D.K., Marsha, S.E., Widayani, W., and Suprijadi, S., 2017, Density Functional Theory (DFT) Study of Molecularly Imprinted Polymer (MIP) Methacrylic Acid (MAA) with D-glucose, Proceeding, 2nd Materials Research Society of Indonesia Meeting, 24-26 Oktober 2016, Bandung.

Yi, L., Fang, R., and Chen, G., 2013, Molecularly Imprinted Solid-Phase Extraction in the Analysis of Agrochemicals, J. Chromatogr. Sci., 51(7), 608-618.

Zhao, S., Wang, X., Jiang, J., Chai, Y., Tian, Y., Feng, T., Ding, Y., Huang, J., Lei, F., Xing, D., and Du, L., 2014, Transport and Metabolism Behavior of Brazilein during Its Entrance into Neural Cells, PLoS One, 9(10), 1-1




Article Metrics

Abstract views : 3437 | views : 5833

Refbacks

  • There are currently no refbacks.




ISSN 0215-9309 (Print)

Jumlah kunjungan : Web
Analytics View my Stat.