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ABSTRACT

Unmanned Aerial Vehicle (UAV) remote sensing is recommended to evaluate damage quickly and quantitatively. 
Therefore, this study aimed to explore the use of RGB aerial images by UAV for evaluating drought damage of 
rice through canopy color and coverage. The procedures were conducted in the dry season of 2018 (August – 
September 2018) at the Balitkabi Experimental field, Muneng, Probolinggo, Indonesia. A split-plot experimental 
field design was used with 2 factors, namely drought treatments at growth stage (Vegetative/P1, Reproductive/
P2, Generative/P3, and Control/P0), and varieties (Jatiluhur/V1, IPB9G/V2, IPB 3S/V3, Hipa 19/V4, Inpari-17/
V5, Mekongga/V6, Mentik Wangi/V7, Ciherang/V8). Canopy temperature data were then obtained using FLUKE 
574 Infrared Thermometer, while images were taken with an RGB camera (Zenmuse X5) attached to Drone DJI 
Inspire I. The images were taken twice during the treatment (4 DAT and 15 DAT), followed by analysis using 
QGIS 2.18 and ImageJ. The results showed that RGB aerial images by UAV could be used in agricultural insurance 
in Indonesia, and similar countries around the world. Although the effect on yield needed to be evaluated, quick 
assessment by UAV was still an effective tool. In addition, drought damage evaluation through canopy color was 
better than canopy coverage in terms of analysis. The conversion from RGB to Lab color space increased the 
determination coefficient in multiple regression of color values against temperature difference (Tc-Ta).
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INTRODUCTION 

Drought is one of the threats for rice farmers that can 
reduce yields and cause huge losses. To address these 
effects, agriculture insurance was first implemented 
in 2013 in Indonesia to protect farmers from crop 
losses due to drought, flood, pest, and disease attacks 
(Giamerti et al., 2021), However, direct measurements 
of soil water content and crop characteristics in the field 
cannot represent the spatial variability of crop water 
status. The use of these methods is also inefficient 
in terms of time, energy, and costs (Li et al., 2010), 
indicating the need for an evaluation system. 

In line with these findings, unmanned aerial vehicle 
(UAV) is an advanced field phenotyping platform for 
providing high spatiotemporal resolution data. Recently, 
the vehicle has been used in several studies (Park et al., 
2017; Poblete et al., 2018; Quebrajo et al., 2018; Yang 
et al., 2018; Zhang et al., 2019) to monitor agricultural 
status with near-earth aerial photos. The use of UAVs 
to quickly and quantitatively assess damage is also 
recommended. Moreover, agricultural studies have used 
the interpretation of remote sensing images for crop 
monitoring (Zhang & Kovacs, 2012), which includes crop 
classification, crop health, yield assessment, biomass, 
and planting density estimation (Qin et al., 2022). The 
main advantages of this approach are its ability to 
provide images below cloud cover and simple mission 
planning during operation, which doesn’t require a lot 
of human resources (Floreano & Wood, 2015). Drone 
is widely recognized as a remote sensing imaging that 
is applicable for smaller areas and plots, including rice 
fields in Indonesia. 

In recent years, UAV has been used for the 
detection and quantification of plants stressed by 
drought, such as turfgrass (J. Zhang et al., 2019; Hong 
et al., 2019). The evaluation by remote sensing is mostly 
based on multispectral reflectance (Araus & Cairns, 
2014) because multispectral images use wavebands 
of red and near infra-red frequently to predict key 

traits on the plant. However, the camera used in this 
process is still relatively expensive. To address this 
challenge, several studies have recommended the use 
of RGB aerial images. Digital images are composed of 
pixels, which are a combination of the color channels 
red-green-blue (RGB). Building on this idea, Pagola et 
al., 2009 reported a negative correlation between the 
N-content of barley leaves and yield, where N-content 
was estimated using digital image analysis. Previous 
studies also found similar or better correlations with 
N status compared to spectral approaches when color 
analysis was reduced to segmented RGB images. The 
red and green channels are often considered the most 
informative compared to the blue channels (Baresel et 
al., 2017). Therefore, this study aimed to explore the 
use of RGB aerial images by UAV to evaluate drought 
damage of rice through canopy color and coverage.

METHODS

This study was conducted during the dry season 
of 2018 (August – September 2018) at Balitkabi 
Experimental Field, Muneng, Probolinggo, Indonesia. 
A split-plot experimental field design was used, which 
comprised 2 factors, namely drought treatments at 
the growth stage (Vegetative/P1, Reproductive/P2, 
Generative/P3, and Control/P0), and varieties (Jatiluhur/
V1, IPB9G/V2, IPB 3S/V3, Hipa 19/V4, Inpari-17/
V5, Mekongga/V6, Mentik Wangi/V7, Ciherang/V8) 
as indicated in Figure 1. Rice was planted at different 
seasons in each drought treatment following the growth 
stage, P1 (July 24th), P2 (July 10th), P3 (June 12th), 
and P0 (June 12th) as shown in Table 1. Furthermore, 
on September 2nd irrigation was stopped at the same 
time in all drought treatments. RGB image was captured 
by a drone at 4 Days After Treatment (DAT) and 15 DAT.

Ground data, such as canopy temperature data 
was obtained using FLUKE 574 Infrared Thermometer, 
at 1 m from the edge of the plot using 450 points of 

Table 1. Date of transplanting and drought treatment on each growth stage

Treatment (growth stage) Transplanting Drought treatment 4 Days after treatment 15 Days after treatment

P0 June 12nd 2018 Sept 2nd, 2018 86 Days after 
transplanting

97 Days after 
transplanting

P3 June 12nd 2018 Sept 2nd, 2018 86 Days after 
transplanting

97 Days after 
transplanting

P2 July 10th, 2018 Sept 2nd, 2018 58 Days after 
transplanting

69 Days after 
transplanting

P1 July 24th, 2018 Sept 2nd, 2018 44 Days after 
transplanting

55 Days after 
transplanting
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Figure 1. Experimental plot
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ImageJ. Drought damage evaluation used Tc – Ta, 
where Tc was Canopy temperature, while Ta was Air 
temperature. Figure 4 ilustrate the method to get the 
RGB image by UAV and analyze the image by splitting 
to R, G, B, and L, a, b to get the value of each band 
and space color

Several regression analyses used temperature 
difference (Tc-Ta) as a dependent variable and 
independent variable (UAV images) of a value of RGB, 
and Lab space color. Furthermore, the calculation of 
the estimate of temperature difference was conducted 
(prediction of temperature difference using UAV 
images)

RESULTS AND DISCUSSION

Canopy Temperature and Canopy Coverage

Canopy temperature during the treatment was 
presented in Figure 5, indicating that during the 
treatment, canopy temperature was almost stable on 
control. However, stressed plants had an increasing 
trend. A significant difference in canopy temperature 
between control and stress plants was shown 
specifically after 8 DAT. It was higher at the stressed 
plant compared to control ones at significant levels of 
α:0.05 and 0.01. 

In this study, monitoring the water stress was 
important in optimizing the yields. Infrared thermometers 
could be used to detect canopy temperatures rapidly 
and non-destructively. Furthermore, the drought 
damage was quantified by determining the difference 
between canopy and air temperature. Water-stressed 
plants exhibited a higher temperature compared to 
non-stressed plants, therefore plants could reduce 
transpiration as presented in Figure 5 (DeJonge et 
al., 2015) . The effect of drought damage on yield 
was further described in another study (Didi et al., 
unpublished).

The canopy temperature of the stressed plant 
(15 days after treatment) was higher compared to the 
control, however its canopy coverage was lower than the 
control. Canopy temperature and coverage in response 
to the drought treatment in each variety, both control 
and stressed plant, could be seen in Figure 6 (a) and 6 
(b). In addition, Inpari-17 exhibited the lowest canopy 
temperature among varieties both in control and under 
stress, while it had the highest canopy coverage among 
varieties under stress. IPB 9G had the largest different 
canopy temperature between the control and stressed 
plant, while it displayed the highest canopy temperature 
and lowest canopy coverage of the stressed plant. It 
could be concluded that IPB 9G suffered the most from 
drought compared to other varieties. 
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The canopy temperature increased during drought 
treatment as an effect of the stomatal closure as the 
primary response to the drought. It was known for 
protecting plants from losing water which could lead to 
death, as presented in previous studies regarding rice 
canopy temperature, showing a correlation between 
rice canopy temperature, water stress, leaf rolling, and 

growth. According to a study by Zhang et al. (2007), 
drought also caused an increase in leaf rolling and 
reduced the dry weight of rice. 

Recognizing UAV Images

Evaluation of drought damage using UAV images 
through canopy color was analyzed in this study. 
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Canopy color determined R, G, and B values and L, a, 
b space color values, showing that R, G, and B values 
increased because of the drought as shown in Figure 
7 (a), L on the lab space color increased as well, while 
a and b values decreased as indicated by Figure 7 (b).

Drought damage reduced canopy coverage and 
changed canopy color, which was more quantitatively 
evaluated by Lab than RGB. In the Lab color space, 
the a axis (position between red and green, while 
green indicated negative values) had the highest 
determination coefficient of canopy temperature. 
Color acceptability decision-making was greatly 
simplified by the transformation of RGB values to a 
uniform color space in which the distance between 
points was directly proportional to the perceived color 
difference. 

The drought treatment in this experiment changed 
the canopy color from RGB to Lab color space, increasing 
the determination coefficient in several regressions of 
color values against temperature difference (Tc-Ta). 

However, analyzing the relationship between temperature 

difference and estimating temperature difference by the 
value of RGB (Figure 8 (a) and Lab (Figure 8 (b)) found 
the possibility of using the independent variable (UAV 
images) to analyze drought damage, specifically on Lab 
space color since it had higher determination coefficient 
(R:0.6418) than RGB (R:0.4815). A similar study by 
Zhan et al., (2019), indicated that the combination of 
UAV RGB images and thermal images could be used 
for monitoring water stress in maize crops since the 4 
Tc-based crop water stress indicators all showed high 
correlations with stomatal conductance (R2 > 0.54).

CONCLUSION

In conclusion, drought damage evaluation through 
canopy color was of higher quality compared to canopy 
coverage in terms of analysis of RGB aerial images. The 
conversion from RGB to Lab color space increased the 
determination coefficient in several regressions of color 
values against Tc-Ta. The results in this study suggested 
that RGB aerial images by UAV must be used in the 

Figure 7. RGB (a) and Lab (b) value on the treatment
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agricultural insurance in Indonesia, and similar countries 
around the world. Although the impact on yield needed 
to be evaluated, the quick assessment by UAV could be 
an effective tool. 
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