Characterization and Antioxidant Potential of Acacia nilotica Synthesized Callus and Seed Nanoparticles
Ifeanyi Jude Ibe(1), Hauwa Ahmed Zailani(2), Mubarak Muhammad Dahiru(3*), Ishaku Adamu Gali(4)
(1) Department of Biochemistry, Faculty of Life Sciences, Modibbo Adama University, Yola, Jimeta, Adamawa State
(2) Department of Biochemistry, Faculty of Life Sciences, Modibbo Adama University, Yola, Jimeta, Adamawa State
(3) Department of Pharmaceutical Technology, School of Science and Technology, Adamawa State Polytechnic, Yola, Jimeta, Adamawa State
(4) Department of Biotechnology, Faculty of Life Sciences, Modibbo Adama University, Yola, Jimeta, Adamawa State
(*) Corresponding Author
Abstract
This research aimed to explore the callogenesis, characterization, and antioxidant potential of Acacia nilotica callus and seed silver nanoparticles. The callus induction was accomplished using plant growth hormones. The silver nanoparticles (AgNPs) were synthesized from the seed and callus extracts and characterized using Gas chromatography-mass spectroscopy (GC-MS), X-ray diffraction (XRD), and Scanning electron microscopy (SEM). The antioxidant activities were evaluated by 1, 1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) assays, molecular docking, and molecular dynamics simulations. The callus formation ranged from 77% to 100%. The AgNPs exhibited a face-centered cubic structure with the size predicted to be 25 nm while the SEM images showed the AgNPs had clustered topography and variable surface morphology. Exactly 33 and 26 compounds were respectively identified in the callus and seed with 8-Hexadecenal 14-methyl- (Z)- (7.71%) and linoleic acid (15.77%) being the most abundant, respectively. A significantly (p < 0.05) higher DPPH and FRAP activities were demonstrated by the callus at the highest dose (1 mg/ml). Moreover, 22-Stigmasten-3-one and 3-(azepan-1-yl)-1,2-benzothiazole 1,1-dioxide, respectively from the callus and seed exhibited the most favorable docking interactions with xanthine oxidase, cytochrome P450 21A2, and myeloperoxidase with a possible activity disruption. Conclusively, the callogenesis technique might be regarded as a reliable alternative to produce pharmacologically active secondary metabolites and nanoparticles against oxidative stress-linked ailments. Moreover, 22-Stigmasten-3-one and 3-(azepan-1-yl)-1,2-benzothiazole 1,1-dioxide might be good starting materials for novel therapeutics synthesis against oxidative stress.
Keywords
Full Text:
PDFReferences
Abdeljaleel, G. A., Azab, S. S., El-Bakly, W. M. & Hassan, A. 2021. 'Methyl palmitate attenuates adjuvant induced arthritis in rats by decrease of CD68 synovial macrophages. Biomed. Pharmacother., 137, 111347.
Afrokh, M., Tahrouch, S., Elmehrach, K., Fahmi, F., Bihi, M. A., Weber-Ravn, H., Hatimi, A. & Tabyaoui, M. 2023. Ethnobotanical, phytochemical and antioxidant study of fifty aromatic and medicinal plants. Chemical Data Collections, 43, 100984.
Ahn, E. Y. & Park, Y. 2020. Anticancer prospects of silver nanoparticles green-synthesized by plant extracts. Materials Science and Engineering: C, 116, 111253.
Arab, H. H., Salama, S. A., Eid, A. H., Kabel, A. M. & Shahin, N. N. 2019. Targeting MAPKs, NF-κB, and PI3K/AKT pathways by methyl palmitate ameliorates ethanol-induced gastric mucosal injury in rats. J. Cell. Physiol., 234, 22424-22438.
Atanasov, A. G., Zotchev, S. B., Dirsch, V. M. & Supuran, C. T. 2021. Natural products in drug discovery: Advances and opportunities. Nature reviews Drug discovery, 20, 200-216.
Batiha, G. E.-S., Akhtar, N., Alsayegh, A. A., Abusudah, W. F., Almohmadi, N. H., Shaheen, H. M., Singh, T. G. & De Waard, M. 2022. Bioactive compounds, pharmacological actions, and pharmacokinetics of genus Acacia. Molecules, 27, 7340.
Benzie, I. F. F. & Strain, J. J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 239, 70-76.
Chen, S., Chen, H., Du, Q. & Shen, J. 2020. Targeting Myeloperoxidase (MPO) Mediated Oxidative Stress and Inflammation for Reducing Brain Ischemia Injury: Potential Application of Natural Compounds. Front. Physiol., 11.
Dahiru, M. M. 2023. Recent advances in the therapeutic potential phytochemicals in managing diabetes. Journal of Clinical and Basic Research, 7, 13-20.
Dahiru, M. M., Ahmadi, H., Faruk, M. U., Aminu, H., Hamman & Abreme, G. C. 2023a. Phytochemical Analysis and Antioxidant Potential of Ethylacetate Extract of Tamarindus Indica (Tamarind) Leaves by Frap Assay. Journal of Fundamental and Applied Pharmaceutical Science, 3, 45-53.
Dahiru, M. M., Alfa, M. B., Abubakar, M. A. & Abdulllahi, A. P. 2024a. Assessment of in silico antioxidant, anti-inflammatory, and antidiabetic activites of Ximenia americana L. Olacaceae. Advances in Medical, Pharmaceutical and Dental Research, 4, 1-13.
Dahiru, M. M., Badgal, E. B. & Musa, N. 2022. Phytochemistry, GS-MS analysis, and heavy metals composition of aqueous and ethanol stem bark extracts of Ximenia americana. GSC Biological and Pharmaceutical Sciences, 21, 145-156.
Dahiru, M. M. & Musa, N. 2024. Phytochemical Profiling, Antioxidant, Antidiabetic, and ADMET Study of Diospyros mespiliformis Leaf, Hochst Ex A. Dc Ebenaceae. J. Fac. Pharm. Ankara/Ankara Ecz. Fak. Derg, 48, 412-435.
Dahiru, M. M., Musa, N., Abaka, A. M. & Abubakar, M. A. 2023b. Potential Antidiabetic Compounds from Anogeissus leiocarpus: Molecular Docking, Molecular Dynamic Simulation, and ADMET Studies. Borneo Journal of Pharmacy, 6, 249-277.
Dahiru, M. M. & Nadro, M. S. 2022a. Anti-diabetic potential of Hyphaene thebaica fruit in streptozotocin-induced diabetic rats. Journal of Experimental and Molecular Biology, 23, 29-36.
Dahiru, M. M. & Nadro, M. S. 2022b. Phytochemical Composition and Antioxidant Potential of Hyphaene thebaica Fruit. Borneo Journal of Pharmacy, 5, 325-333.
Dahiru, M. M., Umar, A. S., Muhammad, M., Fari, I. I. & Musa, Z. Y. 2024b. Phytoconstituents, Fourier-Transform Infrared Characterization, and Antioxidant Potential of Ethyl Acetate Extract of Corchorus olitorius (Malvaceae). Sciences of Phytochemistry, 3, 1-10.
De Oliveira, M. E. B. S., Sartoratto, A. & Carlos Cardoso, J. 2020. In vitro calli production resulted in different profiles of plant-derived medicinal compounds in Phyllanthus amarus. Molecules, 25, 5895.
Hamed, A. B., Mantawy, E. M., El-Bakly, W. M., Abdel-Mottaleb, Y. & Azab, S. S. 2020. Putative anti-inflammatory, antioxidant, and anti-apoptotic roles of the natural tissue guardian methyl palmitate against isoproterenol-induced myocardial injury in rats. Future Journal of Pharmaceutical Sciences, 6, 1-14.
Hasnain, A., Naqvi, S. a. H., Ayesha, S. I., Khalid, F., Ellahi, M., Iqbal, S., Hassan, M. Z., Abbas, A., Adamski, R., Markowska, D., Baazeem, A., Mustafa, G., Moustafa, M., Hasan, M. E. & Abdelhamid, M. M. A. 2022. Plants in vitro propagation with its applications in food, pharmaceuticals and cosmetic industries; current scenario and future approaches. Frontiers in Plant Science, 13.
Hernandez-Hernandez, M. E., Torres-Rasgado, E., Pulido-Perez, P., Nicolás-Toledo, L., Martínez-Gómez, M., Rodríguez-Antolín, J., Pérez-Fuentes, R. & Romero, J. R. 2022. Disordered Glucose Levels Are Associated with Xanthine Oxidase Activity in Overweight Type 2 Diabetic Women. Int. J. Mol. Sci. [Online], 23.
Ishaku, G. A., Haruna, A., Kalum, A. A., Vargas-De-La-Cruz, C. & Solórzano-Acosta, R. 2020. Callogenesis and Antibacterial Activity of Balanites aegyptiaca. Journal of Biosciences and Medicines, 8, 157-168.
Jaison, J. P., Balasubramanian, B., Gangwar, J., James, N., Pappuswamy, M., Anand, A. V., Al-Dhabi, N. A., Valan Arasu, M., Liu, W.-C. & Sebastian, J. K. 2023. Green Synthesis of Bioinspired Nanoparticles Mediated from Plant Extracts of Asteraceae Family for Potential Biological Applications. Antibiotics, 12, 543.
Jemal, K., Sandeep, B. V. & Pola, S. 2017. Synthesis, characterization, and evaluation of the antibacterial activity of Allophylus serratus leaf and leaf derived callus extracts mediated silver nanoparticles. Journal of Nanomaterials, 2017.
Jendele, L., Krivák, R., Škoda, P., Novotný, M. & Hoksza, D. 2019. PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic Acids Res., 47, 345-349.
Kastritis, P. L. & Bonvin, A. M. J. J. 2013. On the binding affinity of macromolecular interactions: daring to ask why proteins interact. Journal of The Royal Society Interface, 10, 20120835.
Kelley, E. E. 2015. Dispelling dogma and misconceptions regarding the most pharmacologically targetable source of reactive species in inflammatory disease, xanthine oxidoreductase. Arch. Toxicol., 89, 1193-1207.
Khan, M., Hoque, S. M., Hossain, K., Siddique, M., Uddin, K. & Rahman, M. M. 2020. Green Synthesis of Silver Nanoparticles using Ipomoea aquatica Leaf Extract and its Cytotoxicity and Antibacterial Activity Assay. Green Chemistry Letters and Reviews, 13.
Korac, B., Kalezic, A., Pekovic-Vaughan, V., Korac, A. & Jankovic, A. 2021. Redox changes in obesity, metabolic syndrome, and diabetes. Redox Biology, 42, 101887.
Kurcinski, M., Oleniecki, T., Ciemny, M. P., Kuriata, A., Kolinski, A. & Kmiecik, S. 2019. CABS-flex standalone: a simulation environment for fast modeling of protein flexibility. Bioinformatics, 35, 694-695.
Lalitha, A., Subbaiya, R. & Ponmurugan, P. 2013. Green synthesis of silver nanoparticles from leaf extract Azhadirachta indica and to study its anti-bacterial and antioxidant property. Int J Curr Microbiol App Sci, 2, 228-235.
Mathur, A., Verma, S. K., Singh, S. K., Prasad, G. & Dua, V. K. 2011. Investigation of the antimicrobial, antioxidant and anti-inflammatory activity of compound isolated from Murraya koenigii. International Journal of Applied Biology and Pharmaceutical Technology, 2, 470-477.
Mohamad, S. S. N. A., Shameli, K., Teow, S.-Y., Chew, J., Ooi, L.-T., Lee-Kiun Soon, M., Ismail, N. A. & Moeini, H. 2023. Enhanced antibacterial and anticancer activities of plant extract mediated green synthesized zinc oxide-silver nanoparticles. Front. Microbiol., 14.
Mohamed, H., Ons, M., Yosra, E. T., Rayda, S., Neji, G. & Moncef, N. 2009. Chemical composition and antioxidant and radical‐scavenging activities of Periploca laevigata root bark extracts. Journal of the Science of Food and Agriculture, 89, 897-905.
Musa, N., Dahiru, M. M. & Badgal, E. B. 2024. Characterization, In Silico Antimalarial, Antiinflammatory, Antioxidant, and ADMET Assessment of Neonauclea excelsa Merr. Sciences of Pharmacy, 3, 92-107.
Namratha, N. & Monica, P. V. 2013. Synthesis of silver nanoparticles using Azadirachta indica (Neem) extract and usage in water purification. Asian Journal of Pharmacy and Technology, 3, 170-174.
Norma, F. S.-S., Raúl, S.-C., Claudia, V.-C. & Beatriz, H.-C. 2019. Antioxidant Compounds and Their Antioxidant Mechanism. In: EMAD, S. (ed.) Antioxidants. Rijeka: IntechOpen.
Obidah, A. H., Umaru, A. H. & Shehu, A. S. 2022. Effect of Green Synthesized Iron Oxide Nanoparticles Using Spinach Extract on Triton X-100-Induced Atherosclerosis in Rats. Biochem. Res. Int., 2022.
Oguntibeju, O. O. 2019. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int. J. Physiol. Pathophysiol. Pharmacol., 11, 45–63.
Oh, S. & Kim, D.-Y. 2022. Characterization, Antioxidant Activities, and Functional Properties of Mucilage Extracted from Corchorus olitorius L. Polymers [Online], 14.
Ortiz, C. L. D., Completo, G. C., Nacario, R. C. & Nellas, R. B. 2019. Potential Inhibitors of Galactofuranosyltransferase 2 (GlfT2): Molecular Docking, 3D-QSAR, and In Silico ADMETox Studies. Sci. Rep., 9, 17096.
Rahuman, H. H. B., Dhandapani, R., Narayanan, S., Palanivel, V., Paramasivam, R., Subbarayalu, R., Thangavelu, S. & Muthupandian, S. 2022. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET nanobiotechnology, 16, 115-144.
Roy, K. 2012. ‘Green’Synthesis of Silver Nanoparticles by using Grape (Vitis Vinifera) Fruit Extract: Characterization of the Particles & Study of Antibacterial Activity.
Sanner, M. F. 1999. Python: a programming language for software integration and development. J. Mol. Graph. Model., 17, 57-61.
Sen, M. K., Nasrin, S., Rahman, S. & Jamal, A. H. M. 2014. In vitro callus induction and plantlet regeneration of Achyranthes aspera L., a high value medicinal plant. Asian Pacific journal of tropical biomedicine, 4, 40-46.
Sharma, H. 2017. Role of growth regulators in micropropagation of woody plants-a review. Int. J. Adv. Res, 5, 2378-2385.
Singh, A., Singh, K., Sharma, A., Kaur, K., Chadha, R. & Singh Bedi, P. M. 2023. Past, Present and Future of Xanthine Oxidase Inhibitors: Design Strategies, Structural and Pharmacological Insights, Patents and Clinical Trials. RSC Medicinal Chemistry.
Sumazian, Y., Syahida, A., Hakiman, M. & Maziah, M. 2010. Antioxidant activities, flavonoids, ascorbic acid and phenolic contents of Malaysian vegetables. Journal of Medicinal Plants Research, 4, 881-890.
Veerasamy, R., Xin, T. Z., Gunasagaran, S., Xiang, T. F. W., Yang, E. F. C., Jeyakumar, N. & Dhanaraj, S. A. 2011. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. Journal of saudi chemical society, 15, 113-120.
Veith, A. & Moorthy, B. 2018. Role of cytochrome P450s in the generation and metabolism of reactive oxygen species. Current Opinion in Toxicology, 7, 44-51.
Zubair, M., Azeem, M., Mumtaz, R., Younas, M., Adrees, M., Zubair, E., Khalid, A., Hafeez, F., Rizwan, M. & Ali, S. 2022. Green synthesis and characterization of silver nanoparticles from Acacia nilotica and their anticancer, antidiabetic and antioxidant efficacy. Environ. Pollut., 304, 119249.
DOI: https://doi.org/10.22146/mot.94215
Article Metrics
Abstract views : 130 | views : 38Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Majalah Obat Tradisional
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Faculty of Pharmacy
Universitas Gadjah Mada