Antioxidant and Anti-Breast Cancer from Uncaria gambir Roxb Leaves: In Silico & In Vitro Study

https://doi.org/10.22146/mot.92604

Dodi Iskandar(1*), Rollando Rollando(2), Susana Susana(3), Suharyani Amperawati(4), Y Erning Indrastuti(5), Muhammad Hilmi Afthoni(6)

(1) Pontianak State Polytechnic, Pontianak, West Kalimantan
(2) Ma Chung University, Malang, East Java
(3) Pontianak State Polytechnic, Pontianak, West Kalimantan
(4) Pontianak State Polytechnic, Pontianak, West Kalimantan
(5) Pontianak State Polytechnic, Pontianak, West Kalimantan
(6) University of Jember, Jember, East Java
(*) Corresponding Author

Abstract


Uncaria gambir Roxb (URG) is one of the plants from West Kalimantan predicted to contain antioxidant and anti-breast cancer. This study aims to test the antioxidant and anti-breast cancer potential. UGR leaves were extracted by infusion method using water for 15 minutes with 4 repetitions at a temperature 70oC. A thick extract of 96.2351 grams (29.979%) was obtained from a sample weight of 321 grams of dried UGR leaves. In vitro antioxidant assay of the extract was investigated using 2,2-diphenylpicrylhydrazyl (DPPH) with positive control using quercetin and ascorbic acid, and the Ferric Reducing Antioxidant Power (FRAP) method. In silico screening showed that the biological agents in UGR had the potential as TP53 expression enhancer, antioxidant, anticarcinogenic, chemopreventive, and free radical scavenger. The antioxidant bioassay results showed IC50 values of 81.21 μg/mL, 73.39 μg/mL, and 9.17 μg/mL in DPPH for extract samples with positive control quercetin, sample extracts with positive control Vitamin C and Vitamin C with positive control quercetin, respectively. Meanwhile, the antioxidant activity of extract samples with the FRAP method showed value of 66,05 μg/mL. Anticancer bioassay result showed that UGR leaves extract with water solvent had the stron potentgial to inhibit 4T1 cells with IC50  87.72 μg/mL.


Keywords


Anti-Breast Cancer; Antioxidant; Uncaria gambir Roxb

Full Text:

PDF


References

Afendi, F. M., Okada, T., Yamazaki, M., Hirai-Morita, A., Nakamura, Y., Nakamura, K., Ikeda, S., Takahashi, H., Altaf-Ul-Amin, Md., Darusman, L. K., Saito, K., & Kanaya, S. (2012). KNApSAcK Family Databases: Integrated Metabolite–Plant Species Databases for Multifaceted Plant Research. Plant and Cell Physiology, 53(2), e1–e1. https://doi.org/10.1093/pcp/pcr165

Alam, M., Khan, A., Wadood, A., Khan, A., Bashir, S., Aman, A., Jan, A. K., Rauf, A., Ahmad, B., Khan, A. R., & Farooq, U. (2016). Bioassay-Guided Isolation of Sesquiterpene Coumarins from Ferula narthex Bioss: A New Anticancer Agent. Frontiers in Pharmacology, 7. https://doi.org/10.3389/fphar.2016.00026

Almeida, M., Salam, S., Rahmadani, A., Helmi, H., Narsa, A. C., Kusuma, S. A. F., & Sriwidodo, S. (2022). The Potency of the Genus Uncaria from East Borneo for Herbal Medicine Purposes: A Mini-review. Journal of Tropical Pharmacy and Chemistry, 6(2), 167–176. https://doi.org/10.25026/jtpc.v6i2.457

Aykul, S., & Erik, M.-H. (2016). Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis. Analytical Biochemistry, 508, 97–103. https://doi.org/10.1016/j.ab.2016.06.025

Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C.-M. (2022). Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules, 27(4), 1326. https://doi.org/10.3390/molecules27041326

Christina, Y. I., Nafisah, W., Atho’illah, M. F., Rifa’i, M., Widodo, N., & Djati, S. (2021). Anti-breast cancer potential activity of Phaleria macrocarpa (Scheff.) Boerl. Leaf extract through in silico studies. Journal of Pharmacy & Pharmacognosy Research, 6(9), 22.

Desai, T. H., & Joshi, S. V. (2019a). Anticancer activity of saponin isolated from Albizia lebbeck using various in vitro models. Journal of Ethnopharmacology, 231, 494–502. https://doi.org/10.1016/j.jep.2018.11.004

Desai, T. H., & Joshi, S. V. (2019b). Anticancer activity of saponin isolated from Albizia lebbeck using various in vitro models. Journal of Ethnopharmacology, 231, 494–502. https://doi.org/10.1016/j.jep.2018.11.004

El-Deiry, W. S. (2023). Targeting Mutated p53: Naivete and Enthusiasm to Attempt the Impossible. Cancer Research, 83(7), 979–982. https://doi.org/10.1158/0008-5472.CAN-22-0995

Ganesh, K., & Massagué, J. (2021). Targeting metastatic cancer. Nature Medicine, 27(1), 34–44. https://doi.org/10.1038/s41591-020-01195-4

Gupta, A. K., Tulsyan, S., Bharadwaj, M., & Mehrotra, R. (2019). Systematic Review on Cytotoxic and Anticancer Potential of N-Substituted Isatins as Novel Class of Compounds Useful in Multidrug-Resistant Cancer Therapy: In Silico and In Vitro Analysis. Topics in Current Chemistry, 377(3), 15. https://doi.org/10.1007/s41061-019-0240-9

Hariono, M., Rollando, R., Yoga, I., Harjono, A., Suryodanindro, A., Yanuar, M., Gonzaga, T., Parabang, Z., Hariyono, P., Febriansah, R., Hermawansyah, A., Setyani, W., & Wahab, H. (2021). Bioguided Fractionation of Local Plants against Matrix Metalloproteinase9 and Its Cytotoxicity against Breast Cancer Cell Models: In Silico and In Vitro Study (Part II). Molecules, 26(5), 1464. https://doi.org/10.3390/molecules26051464

Hartati, F. K., Kurnia, D., Nafisah, W., & Haryanto, I. B. (2024). Potential anticancer agents of Curcuma aeruginosa-based kombucha: In vitro and in silico study. Food Chemistry Advances, 4, 100606. https://doi.org/10.1016/j.focha.2024.100606

Hartono Wijaya, S., Tanaka, Y., Altaf-Ul-Amin, Md., Hirai Morita, A., Mochamad Afendi, F., Batubara, I., Ono, N., K. Darusman, L., & Kanaya, S. (2016). Utilization of KNApSAcK Family Databases for Developing Herbal Medicine Systems. Journal of Computer Aided Chemistry, 17(0), 1–7. https://doi.org/10.2751/jcac.17.1

Horn, P. A., Pedron, N. B., Junges, L. H., Rebelo, A. M., Da Silva Filho, H. H., & Zeni, A. L. B. (2021). Antioxidant profile at the different stages of craft beers production: The role of phenolic compounds. European Food Research and Technology, 247(2), 439–452. https://doi.org/10.1007/s00217-020-03637-2

Indrayanto, G., Putra, G. S., & Suhud, F. (2021). Validation of in-vitro bioassay methods: Application in herbal drug research. In Profiles of Drug Substances, Excipients and Related Methodology (Vol. 46, pp. 273–307). Elsevier. https://doi.org/10.1016/bs.podrm.2020.07.005

Iskandar, A., Alamsyah, D., & Utami, T. (2020). Gambaran Pemeriksaan Payudara Sendiri (SADARI) Pesantren Putri. Jumantik, 7(2), 16–25. http://dx.doi.org/10.29406/jjum.v7i1

Iskandar, D., & Ramdhan, N. A. (2020). PEMBUATAN TEH DAUN GAMBIR (Uncaria Gambir Roxb) ASAL KALIMANTAN BARAT PADA VARIASI SUHU PENGERINGAN. JURNAL TEKNOLOGI TECHNOSCIENTIA, 13(1), 20–27. https://doi.org/10.34151/technoscientia.v13i1.2943

Iskandar, D., & Warsidah, W. (2020a). Qualitative Phytochemical Screening and Antioxidant Activity of Ethanol Root Extract of Spatholobus littoralis Hassk. The Journal of Food and Medicinal Plants, 1(1), 13–15. https://doi.org/10.25077/jfmp.1.1.13-15.2020

Iskandar, D., & Warsidah, W. (2020b). Qualitative Phytochemical Screening and Antioxidant Activity of Ethanol Root Extract of Spatholobus littoralis Hassk. The Journal of Food and Medicinal Plants, 1(1), 13–15. https://doi.org/10.25077/jfmp.1.1.13-15.2020

Iskandar, D., Widodo, N., Warsito, Masruri, Rollando, & Antang, Y. P. P. (2022). Phenolic content, antioxidant, cytotoxic of fractions of Spatholobus littoralis Hassk from Kalimantan, Indonesia. Journal of Hunan University Natural Sciences, 49(3), 14–23. https://doi.org/10.55463/issn.1674-2974.49.3.2

Iskandar, D., Widodo, N., Warsito, W., Masruri, M., & Rollando, R. (2022). A Review of Ethnomedicinal Plants used in West Kalimantan. International Journal Agricultural Sciences, 6(1), 27–41. http://ijasc.pasca.unand.ac.id/index.php/ijac/article/view/272/106

Jamuna, S., Karthika, K., Paulsamy, S., Thenmozhi, K., Kathiravan, S., & Venkatesh, R. (2015). Confertin and scopoletin from leaf and root extracts of Hypochaeris radicata have anti-inflammatory and antioxidant activities. Industrial Crops and Products, 70, 221–230. https://doi.org/10.1016/j.indcrop.2015.03.039

Munggari, I. P., Kurnia, D., Deawati, Y., & Julaeha, E. (2022). Current Research of Phytochemical, Medicinal and Non-Medicinal Uses of Uncaria gambir Roxb.: A Review. Molecules, 27(19), 6551. https://doi.org/10.3390/molecules27196551

Rollando, R., Monica, E., Afthoni, M. H., Warsito, W., Masruri, M., & Widodo, N. (2023). A Phenylpropanoid Compound from the Seeds of Sterculia quadrifida and its Cytotoxic Activity: Http://www.doi.org/10.26538/tjnpr/v7i6.21. Tropical Journal of Natural Product Research (TJNPR), 7(6), 3203–3208. https://www.tjnpr.org/index.php/home/article/view/2105

Sheth, M., & Esfandiari, L. (2022). Bioelectric Dysregulation in Cancer Initiation, Promotion, and Progression. Frontiers in Oncology, 12, 846917. https://doi.org/10.3389/fonc.2022.846917

Singh, K., Bhori, M., Kasu, Y. A., Bhat, G., & Marar, T. (2018). Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity – Exploring the armoury of obscurity. Saudi Pharmaceutical Journal, 26(2), 177–190. https://doi.org/10.1016/j.jsps.2017.12.013

Stasevych, M., Zvarych, V., Lunin, V., Deniz, N. G., Gokmen, Z., Akgun, O., Ulukaya, E., Poroikov, V., Gloriozova, T., & Novikov, V. (2017). Computer-aided prediction and cytotoxicity evaluation of dithiocarbamates of 9,10-anthracenedione as new anticancer agents. SAR and QSAR in Environmental Research, 28(5), 355–366. https://doi.org/10.1080/1062936X.2017.1323796

Steward, W. P., & Brown, K. (2013). Cancer chemoprevention: A rapidly evolving field. British Journal of Cancer, 109(1), 1–7. https://doi.org/10.1038/bjc.2013.280

Tianing, N. W. (2012). Identifikasi Varian G10398a Gen Nd3 DNA Mitokondria Pada Penderita Kanker Payudara. Jurnal Kedokteran Medicina, 43(3), 158–162. http://erepo.unud.ac.id/id/eprint/5841/1/b50b6fbb9cf9586e1372c1a77b17f644.pdf

Weerapreeyakul, N., Nonpunya, A., Barusrux, S., Thitimetharoch, T., & Sripanidkulchai, B. (2012). Evaluation of the anticancer potential of six herbs against a hepatoma cell line. Chinese Medicine, 7(1), 15. https://doi.org/10.1186/1749-8546-7-15

WHO. (2020). The Global Cancer Observatory. https://gco.iarc.fr/today/data/factsheets/populations/360-indonesia-fact-sheets.pdf

Zawacka-Pankau, J., Grinkevich, V. V., Burmakin, M., Vema, A., Fawkner, K., Issaeva, N., Andreotti, V., Dickinson, E. R., Hedström, E., Spinnler, C., Inga, A., Larsson, L.-G., Karlén, A., Tarasova, O., Poroikov, V., Lavrenov, S., Preobrazhenskaya, M., Barran, P. E., Okorokov, A. L., & Selivanova, G. (2018). Novel allosteric mechanism of p53 activation by small molecules for targeted anticancer therapy [Preprint]. Cancer Biology. https://doi.org/10.1101/384248



DOI: https://doi.org/10.22146/mot.92604

Article Metrics

Abstract views : 772 | views : 92

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Majalah Obat Tradisional

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

©Majalah Obat Tradisional (Traditional Medicine Journal)
 ISSN 2406-9086
Faculty of Pharmacy
Universitas Gadjah Mada