Effect of Black Glutinous Rice Fermented Beverage on Short-Chain Fatty Acid Levels in Metabolic Syndrome Rats
Putri Amalina Nafisa(1*), Ida Nurwati(2), Wachid Putranto(3)
(1) Departmen of Nutrition Sciences, School of Postgraduate, Sebelas Maret University, Surakarta, Central Java
(2) Doctoral Program in Medical Science, Postgraduate Program, Sebelas Maret University, Surakarta, Central Java
(3) Department of Internal Medicine, Faculty of Medicine, Sebelas Maret University, Surakarta, Central Java
(*) Corresponding Author
Abstract
Metabolic Syndrome (MetS) represents a combination of metabolic factors that can elevate the likelihood of developing type 2 diabetes mellitus (T2DM) and coronary heart disease (CHD). The high prevalence of MetS results in a significant socio-economic burden. However, current management approaches have limitations, prompting the exploration of functional foods and nutraceuticals as promising alternatives. The primary objective of this study is to investigate the impact of Black Glutinous Rice Fermented Beverage (BGRFB) on Short Chain Fatty Acids (SCFA) concentration in a MetS rat model. Rats were induced with a high-fat diet (HFD) and streptozotocin (STZ)-nicotinamide (NA) to induce MetS conditions. BGRFB was administered as a treatment to the MetS rat group. The results showed that the Negative Control (NC) group exhibited a significant decrease in SCFA levels compared to the normal group (N). However, administration of BGRFB to the T2 group resulted in a significant increase in SCFA levels. The SCFA levels in the T2 group were higher but not significantly different from the Positive Control (PC) group treated with metformin. Increasing SCFA production could be an effective strategy in addressing Mets. This study demonstrates the potential of BGRFB as a therapy to enhance SCFA production and improve MetS. The outcomes of this investigation are anticipated to provide insights into novel dietary approaches for MetS management.
Keywords
Full Text:
PDFReferences
Ai, X., Wu, C., Yin, T., Zhur, O., Liu, C., Yan, X., Yi, C. P., Liu, D., Xiao, L., Li, W., Xie, B., & He, H. (2021). Antidiabetic Function of Lactobacillus fermentum MF423-Fermented Rice Bran and Its Effect on Gut Microbiota Structure in Type 2 Diabetic Mice. Frontiers in Microbiology, 12(June), 1–14. https://doi.org/10.3389/fmicb.2021.682290
Alexander, C., Swanson, K. S., Fahey, G. C., & Garleb, K. A. (2019). Perspective: Physiologic Importance of Short-Chain Fatty Acids from Nondigestible Carbohydrate Fermentation. Advances in Nutrition, 10(4), 576–589. https://doi.org/10.1093/advances/nmz004
Cardona, F., Andrés-Lacueva, C., Tulipani, S., Tinahones, F. J., & Queipo-Ortuño, M. I. (2013). Benefits of Polyphenols on Gut Microbiota and Implications in Human Health. Journal of Nutritional Biochemistry, 24(8), 1415–1422. https://doi.org/10.1016/j.jnutbio.2013.05.001
Eleazu, C. O., Eleazu, K. C., Chukwuma, S., & Essien, U. N. (2013). Review of the Mechanism of Cell Death Resulting from Streptozotocin Challenge in Experimental Animals , Its Practical Use and Potential Risk to Humans. Journal of Diabetes & Metabolic Disorders, 12(60), 1–7.
Ermolenko, E., Simanenkova, A., Voropaeva, L., Lavrenova, N., Kotyleva, M., Minasian, S., Chernikova, A., Timkina, N., Gladyshev, N., Dmitriev, A., Suvorov, A., Galagudza, M., & Karonova, T. (2022). Metformin Influence on the Intestinal Microbiota and Organism of Rats with Metabolic Syndrome. International Journal of Molecular Sciences, 23(12). https://doi.org/10.3390/ijms23126837
Fauziyah, N., & Putri, M. (2020). Pie Tape Ketan Hitam Efektif Memperbaiki Frekuensi Buang Air Besar pada Remaja dengan Konstipasi (G. P. E. Mulyo & Surmita (eds.); 1st ed.). Politeknik Kesehatan Kemenkes Bandung.
Fauziyah, Nurjannah, F., & Surmita, S. (2020). Effect of Fermented Glutinous Black Rice on Low Density Lipoprotein (Ldl) Cholesterol Levels. Jurnal Riset Kesehatan Poltekkes Depkes Bandung, 12(1), 139–148. https://doi.org/10.34011/juriskesbdg.v1i1.1759
Fernandes, I., Faria, A., Calhau, C., de Freitas, V., & Mateus, N. (2014). Bioavailability of Anthocyanins and Derivatives. Journal of Functional Foods, 7(1), 54–66. https://doi.org/10.1016/j.jff.2013.05.010
Fernandes, I., Faria, A., de Freitas, V., Calhau, C., & Mateus, N. (2015). Multiple-Approach Studies to Assess Anthocyanin Bioavailability. Phytochemistry Reviews, 14(6), 899–919. https://doi.org/10.1007/s11101-015-9415-3
Festi, D., Schiumerini, R., Eusebi, L. H., Marasco, G., Taddia, M., & Colecchia, A. (2014). Gut Microbiota and Metabolic Syndrome. World Journal of Gastroenterology, 20(43), 16079–16094. https://doi.org/10.3748/wjg.v20.i43.16079
Fukaya, M., Tamura, Y., Chiba, Y., Tanioka, T., Mao, J., Inoue, Y., Yamada, M., Waeber, C., Ido-Kitamura, Y., Kitamura, T., & Kaneki, M. (2013). Protective effects of a nicotinamide derivative, isonicotinamide, against streptozotocin-induced β-cell damage and diabetes in mice. Biochemical and Biophysical Research Communications, 442(1–2), 92–98. https://doi.org/10.1016/j.bbrc.2013.11.024
Ghezzi, A. C., Cambri, L. T., Botezelli, J. D., Ribeiro, C., Dalia, R. A., & De Mello, M. A. R. (2012). Metabolic Syndrome Markers in Wistar Rats of Different Ages. Diabetology and Metabolic Syndrome, 4(1), 1–7. https://doi.org/10.1186/1758-5996-4-16
Gui, H., Sun, L., Liu, R., Si, X., Li, D., Wang, Y., Shu, C., Sun, X., Jiang, Q., Qiao, Y., Li, B., & Tian, J. (2022). Current Knowledge of Anthocyanin Metabolism in The Digestive Tract: Absorption, Distribution, Degradation, and Interconversion. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2022.2026291
International Diabetes federation. (2006). The IDF Consensus Wordlwide Definition of the Metabolic Syndrome. Digestive Diseases, 28(1), 186–191. https://doi.org/10.1159/000282084
Jocken, J. W. E., Hernández, M. A. G., Hoebers, N. T. H., van der Beek, C. M., Essers, Y. P. G., Blaak, E. E., & Canfora, E. E. (2018). Short-Chain Fatty Acids Differentially Affect Intracellular lipolysis in a Human White Adipocyte Model. Frontiers in Endocrinology, 8(JAN), 1–9. https://doi.org/10.3389/fendo.2017.00372
Kapoor, P., Tiwari, A., Sharma, S., Tiwari, V., Sheoran, B., Ali, U., & Garg, M. (2023). Effect of Anthocyanins on Gut Health Markers , Firmicutes ‑ Bacteroidetes Ratio and Short ‑ Chain Fatty Acids : A Systematic Review Via Meta ‑ Analysis. Scientific Reports, 1–16. https://doi.org/10.1038/s41598-023-28764-0
Ladeiras-Lopes, R., Fontes-Carvalho, R., Bettencourt, N., Sampaio, F., Gama, V., & Leite-Moreira, A. (2015). Novel Therapeutic Targets of Metformin: Metabolic Syndrome and Cardiovascular Disease. Expert Opinion on Therapeutic Targets, 19(7), 869–877. https://doi.org/10.1517/14728222.2015.1025051
Linninge, C., Xu, J., Bahl, M. I., Ahrné, S., & Molin, G. (2019). Lactobacillus fermentum and Lactobacillus plantarum Increased Gut Microbiota Diversity and Functionality, and Mitigated Enterobacteriaceae, in a Mouse Model. Beneficial Microbes, 10(4), 413–424. https://doi.org/10.3920/BM2018.0074
Marques, C., Meireles, M., Norberto, S., Leite, J., Freitas, J., Pestana, D., Faria, A., & Calhau, C. (2016). High-Fat Diet-Induced Obesity Rat Model: A Comparison Between Wistar and Sprague-Dawley Rat. Adipocyte, 5(1), 11–21. https://doi.org/10.1080/21623945.2015.1061723
Mattioli, R., Francioso, A., Mosca, L., & Silva, P. (2020). Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules, 25(17). https://doi.org/10.3390/molecules25173809
May, K. S., & Den Hartigh, L. J. (2021). Modulation of Adipocyte Metabolism By Microbial Short‐Chain Fatty Acids. Nutrients, 13(10), 1–23. https://doi.org/10.3390/nu13103666
Mueller, N. T., Differding, M. K., Zhang, M., Maruthur, N. M., Juraschek, S. P., Miller, E. R., Appel, L. J., & Yeh, H. C. (2021). Metformin Affects Gut Microbiome Composition and Function and Circulating Short-Chain Fatty Acids: A Randomized Trial. Diabetes Care, 44(7), 1462–1471. https://doi.org/10.2337/dc20-2257
Müller, M., Hernández, M. A. G., Goossens, G. H., Reijnders, D., Holst, J. J., Jocken, J. W. E., van Eijk, H., Canfora, E. E., & Blaak, E. E. (2019). Circulating but not Faecal Short-Chain Fatty Acids are Related to Insulin Sensitivity, Lipolysis and GLP-1 Concentrations in Humans. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-48775-0
National Cholesterol Education Program. (2001). Executive Summary of the Third Report of the National Cholesterol Education Programme. National Cholesterol Education Program, 285(19), 2486–2497.
Nishitsuji, K., Xiao, J., Nagatomo, R., Umemoto, H., Morimoto, Y., Akatsu, H., Inoue, K., & Tsuneyama, K. (2017). Analysis of The Gut Microbiome and Plasma Short-Chain Fatty Acid Profiles in A Spontaneous Mouse Model of Metabolic Syndrome. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-16189-5
Niture, N. T., Ansari, A. A., & Naik, S. R. (2014). Anti-Hyperglycemic Activity of Rutin in Streptozotocin-Induced Diabetic Rats: An effect Mediated Through Cytokines, Antioxidants and Lipid Biomarkers. Indian Journal of Experimental Biology, 52(7), 720–727.
Nyakudya, T. T., Tshabalala, T., Dangarembizi, R., Erlwanger, K. H., & Ndhlala, A. R. (2020). The Potential Therapeutic Value of Medicinal Plants in the Management of Metabolic Disorders. Molecules, 25(11), 1–20. https://doi.org/10.3390/molecules25112669
Ranasinghe, P., Mathangasinghe, Y., Jayawardena, R., Hills, A. P., & Misra, A. (2017). Prevalence and Trends of Metabolic Syndrome Among Adults in the Asia-Pacific rRgion: A Systematic Review. BMC Public Health, 17(1), 1–9. https://doi.org/10.1186/s12889-017-4041-1
Rochlani, Y., Pothineni, N. V., Kovelamudi, S., & Mehta, J. L. (2017). Metabolic Syndrome: Pathophysiology, Management, and Modulation by Natural Compounds. Therapeutic Advances in Cardiovascular Disease, 11(8), 215–225. https://doi.org/10.1177/1753944717711379
Sigit, F. S., Tahapary, D. L., Trompet, S., Sartono, E., Willems Van Dijk, K., Rosendaal, F. R., & De Mutsert, R. (2020). The Prevalence of Metabolic Syndrome and its Association with Body Fat Distribution in Middle-Aged Individuals from Indonesia and the Netherlands: A Cross-Sectional Analysis of Two Population-Based Studies. Diabetology and Metabolic Syndrome, 12(1), 1–11. https://doi.org/10.1186/s13098-019-0503-1
Sudargo, T., Aulia, B., Prameswari, A. A., Isnansetyo, A., Puspita, I. D., Budiyanti, S. A., Muslichah, R., Aristasari, T., Putri, S. R., & Alfionita, K. (2021). Effect of Administration of CHAGURO Made of Chayote (Sechium edule) and Tuna (Thunnus sp.)on Rats Induced with Streptozotocin-Nicotinamide and A High-Fat Diet. Current Research in Nutrition and Food Science, 9(1), 258–266. https://doi.org/10.12944/CRNFSJ.9.1.24
Szymczak-Pajor, I., Wenclewska, S., & Śliwińska, A. (2022). Metabolic Action of Metformin. Pharmaceuticals, 15(7). https://doi.org/10.3390/ph15070810
Teixeira, T. F. S., Grześkowiak, Ł., Franceschini, S. C. C., Bressan, J., Ferreira, C. L. L. F., & Peluzio, M. C. G. (2013). Higher Level of Faecal SCFA in Women Correlates with Metabolic Syndrome Risk Factors. British Journal of Nutrition, 109(5), 914–919. https://doi.org/10.1017/S0007114512002723
Tian, L., Tan, Y., Chen, G., Wang, G., Sun, J., Ou, S., Chen, W., & Bai, W. (2019). Metabolism of Anthocyanins and Consequent Effects on the Gut Microbiota. Critical Reviews in Food Science and Nutrition, 59(6), 982–991. https://doi.org/10.1080/10408398.2018.1533517
Verediano, T. A., Stampini Duarte Martino, H., Dias Paes, M. C., & Tako, E. (2021). Effects of Anthocyanin on Intestinal Health: A Systematic Review. Nutrients, 13(4). https://doi.org/10.3390/nu13041331
Wang, H., Liu, D., Ji, Y., Liu, Y., Xu, L., & Guo, Y. (2020). Dietary Supplementation of Black Rice Anthocyanin Extract Regulates Cholesterol Metabolism and Improves Gut Microbiota Dysbiosis in C57BL/6J Mice Fed a High-Fat and Cholesterol Diet. Molecular Nutrition and Food Research, 64(8), 1–13. https://doi.org/10.1002/mnfr.201900876
Wang, Lee, D. K., Liu, M., Portincasa, P., & Wang, D. Q. H. (2020). Novel Insights Into the Pathogenesis and Management of the Metabolic Syndrome. In Pediatric Gastroenterology, Hepatology and Nutrition (Vol. 23, Issue 3). https://doi.org/10.5223/PGHN.2020.23.3.189
Wang, M., Zhang, Z., Sun, H., He, S., Liu, S., Zhang, T., Wang, L., & Ma, G. (2022). Research progress of anthocyanin prebiotic activity: A review. Phytomedicine, 102(May), 154145. https://doi.org/10.1016/j.phymed.2022.154145
Xu, S., Wang, Y., Wang, J., & Geng, W. (2022). Kombucha Reduces Hyperglycemia in Type 2 Diabetes of Mice by Regulating Gut Microbiota and Its Metabolites. Foods, 11(5). https://doi.org/10.3390/foods11050754
Yang, D., Lyu, W., Hu, Z., Gao, J., Zheng, Z., Wang, W., Firrman, J., & Ren, D. (2021). Probiotic Effects of Lactobacillus fermentum ZJUIDS06 and Lactobacillus plantarum ZY08 on Hypercholesteremic Golden Hamsters. Frontiers in Nutrition, 8(June), 1–13. https://doi.org/10.3389/fnut.2021.705763
Zhu, Y., Sun, H., He, S., Lou, Q., Yu, M., Tang, M., & Tu, L. (2018). Metabolism and Prebiotics Activity of Anthocyanins from Black Rice (Oryza sativa L.) in Vitro. Plos One, 13(4).
DOI: https://doi.org/10.22146/mot.86287
Article Metrics
Abstract views : 932 | views : 835Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Majalah Obat Tradisional
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Faculty of Pharmacy
Universitas Gadjah Mada