Cover Image

LAHAN BASAH BUATAN SEBAGAI MEDIA PENGOLAHAN AIR LIMBAH BUDIDAYA UDANG VANAME (Litopenaeus vannamaei) BERSALINITAS RENDAH (Constructed Wetland for Remediation of Brackish Wastewater from White Shrimp (Litopenaeus vannamaei) Cultivation)

https://doi.org/10.22146/jml.18743

Syafrudin Raharjo(1*), Suprihatin Suprihatin(2), Nastiti S. Indrasti(3), Etty Riani(4), Supriyadi Supriyadi(5), Warih Hardanu(6)

(1) Universitas Negeri Papua, Jl. Gunung Salju, Amban Manokwari Papua Barat 98314
(2) Teknologi Industri Pertanian Institut Pertanian Bogor Jl. Raya Darmaga Bogor 16680
(3) Teknologi Industri Pertanian Institut Pertanian Bogor Jl. Raya Darmaga Bogor 16680
(4) Manajemen Sumberdaya Perairan Institut Pertanian Bogor Jl. Raya Darmaga Bogor 16680
(5) Balai Layanan Usaha Produksi Perikanan Budidaya (BLUPPB) Desa Pusakajaya Utara, Kecamatan Cilebar Kabupaten Karawang Jawa Barat 41353
(6) Balai Layanan Usaha Produksi Perikanan Budidaya (BLUPPB) Desa Pusakajaya Utara, Kecamatan Cilebar Kabupaten Karawang Jawa Barat 41353
(*) Corresponding Author

Abstract


ABSTRAK

Air limbah budidaya udang berjumlah relatif banyak dan mengandung bahan pencemar yang berpotensi mencemari lingkungan. Di sisi lain, air limbah tersebut dapat diolah dan diresirkulasi dalam sistem budidaya udang. Tujuan penelitian ini adalah untuk menyelidiki kemampuan sistem lahan basah buatan-aliran air permukaan (LBB-AAP) yang ditanami dengan rumput vetiver (Chrysopogon zizanioides, L) dalam menghilangkan pencemar (NO2-, NO3-, NH3, NH4+ dan PO43-) dari air limbah budidaya udang vaname (Litopenaeus vannamaei) kondisi mesohaline dan mengevaluasi kinerja sistem tersebut. Hasil penelitian menunjukkan bahwa sistem LBB-AAP mampu mengeliminasi parameter NO2-, NO3-, NH3, NH4+ dan PO43- secara signifikan. Rumput vetiver mampu tumbuh pada kondisi mesohaline dan dapat melakukan remediasi air limbah tersebut. Serapan rumput vetiver dalam sistem LBB-AAP untuk NO3-, NH4+ dan PO43-adalah 28, 63 dan 83 %. Desain konstruksi LBB-AAP tipe Hidroponik menunjukkan kinerja terbaik dalam pengendalian air limbah budidaya udang vaname dibandingkan dengan tipe emergent, kombinasi hidroponik dan emergent.

ABSTRACT

The amount of wastewater shrimp cultivation is relatively/too much, contains a variety of pollutants and potentially pollute the environment. In other side, The wastewater can be treated and also recirculated in shrimp cultivation systems. The purpose of research is to investigate the ability of flow water surface-constructed wetland system (FWS-CWs) that planted vetiver grass (Chrysopogon zizanioides, L) that removes of pollutants (NO2-, NO3-, NH3, NH4+and PO43-) from wastewater vaname shrimp cultivation (Litopenaeus vannamaei) on conditions mesohaline and with the aim of evaluating the performance of the system. The results of the research indicate that FWS-CWs able to eliminate the parameters significantly of NO2-, NO3-, NH3, NH4+ and PO43-. Vetiver grass could grow on mesohaline conditions and it can perform remediation of the wastewater. Uptake of vetiver grass in FWS-CWs system for NO3-, NH4+ dan PO43-is 28, 63 and 83%. Construction design FWS-CWs with Hydroponics type provide the best performance in the control of wastewater vaname shrimp cultivation when compared with emergent type and a combination of hydroponics-emergent.

 


Keywords


air limbah; budidaya udang; lahan basah buatan; rumput vetiver; udang vaname. constructed wetland; vaname shrimp; vetiver grass; wastewater shrimp cultivation



References

Anonim, 1993. Design Manual: Nitrogen Control. EPA 625/R-93/010. U.S. EPA Office of Research and Development, Washington D.C.

Anonim, 2011. World Aquaculture 2010. Food and Agriculture Organization Of The United Nations, FAO Fisheries And Aquaculture Technical Paper 500/1, Rome.

Anonim, 2014. Statistik Perikanan Indonesia 2014. Badan Pusat Statistik, Jakarta.

Arias, C.A., Del Bubba, M., dan Brix, H., 2001. Phosphorous Removal by Sands for Use as Media in Subsurface Flow Constructed Reed Beds. J. Water Res., 35:1159-1168.

Avnimelech, Y., 2006. Bio-filters: The Need for An New Comprehensive Approach. Aquacultural Engineering, 34:172–178.

Avnimelech, Y., dan Malka, K., 2009. Evaluation of Nitrogen Uptake and Excretion by Tilapia in Biofloc Tanks, Using 15N Tracing. Aquaculture, 287:163–168.

Boyd, C.E., 2003. Guidelines for Aquaculture Effluent Management at The Farm-Level. Aquaculture, 226:101–112.

Brix, H., 1997. Do Macrophytes Play a Role in Constructed Treatment Wetlands? Water Science and Technology, 35(5):11-17.

Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P. dan Verstraete, W., 2007. Nitrogen Removal Techniques in Aquaculture For a Sustainable Production. Aquaculture, 270:1–14.

Crites, R.W., Middlebrooks, J., dan Reed, Sh.C., 2006. Natural Wastewater Treatment Systems. CRC Press, Boca Raton.

Dumas, A., Laliberte, G., Lessard, P. dan de la Noue, J., 1998. Biotreatment of Fish Farm Effluents Using The Cyanobacterium Phormidium Bohneri. Aquacultural Engineering, 17:57-68.

Emerson, K., Russo, R.C., Lund, R.E. dan Thurston, R.V., 1975. Aqueous Ammonia Equilibrium Calculations: Effect of pH and Temperature. J. Fish. Res. Board Can., 32(12): 2379-2383.

Fang, Y., Babourina, O., Rengel, Z., Yang, X. dan Pu, P.M., 2007. Ammonium and Nitrate Uptake by The Floating Plant Landoltia Punctata. Annuals of Botany, 99(2):365–370.

Garnett, T.P., Shabala, N.S., Smethurst, P.J. dan Newman, I.A., 2003. Kinetics of Ammonium and Nitrate Uptake by Eucalypt Roots and Associated Proton Fluxes Measured Using Ion Selective Microelectrodes. Functional Plant Biology, 30:1165–1176.

Greenway, M., dan Woolley, A., 2001. Changes in Plant Biomass and Nutrient Removal Over 3 Years in Constructed Wetlands in Cairns, Australia. J. Water Sci. & Tech., 44:303-310.

Hargreaves, J.A., dan Tucker, C.S., 2004. Managing Ammonia in Fish Ponds. Southern Regional Aquaculture Center (SRAC). SRAC Publication No. 4603.

Kadlec, R.H., dan Wallace, S.D., 2009. Treatment Wetlands Second Edition. CRC Press, Boca Raton.

Lee, C.G., Fletcher, T.D., dan Sun, G., 2009. Nitrogen Removal in Constructed Wetland Systems. Engineering in Life Sciences. 9(1):11–22.

Lin, C.K., dan Yang, Y., 2003. Minimizing Environmental Impacts of Freshwater Aquaculture and Reuse of Pond Effluents and Mud. Aquaculture, 226:57–68.

Lin, Y.F., Jing, Sh.R., Lee, D.Y., dan Wang, T.W., 2002. Nutrient Removal from Aquaculture Wastewater Using A Constructed Wetlands System. Aquaculture, 209:169–184.

Naylor, R.L., Goldburg, R.J., Primavera, J.H., Kautsky, N., Beveridge, M.C.M., Clay, J., Folke, C., Lubchenco, J., Mooney, H. dan Troell, M., 2000. Effect of Aquaculture on World Fish Supplies. Nature, 405:1017–1024.

Pan, .J, Sun, H., Nduwimana, A., Wang, Y., Zhou, G., Ying, Y. dan Zhang, R., 2007. Hydroponic Plate/Fabric/Grass System for Treatment of Aquacultural Wastewater. Aquacultural Engineering, 37(3):266–273.

Piedrahita, R.H., 2003. Reducing the Potential Environmental Impact of Tank Aquaculture Effluents Through Intensification and Recirculation. Aquaculture, 226:35–44.

Reddy, K.R., dan D’Angelo, E.M., 1997. Biogeochemical Indicators to Evaluate Pollutant Removal Efficiency In Constructed Wetlands. J. Water Sci. and Tech., 35:1-10.

Reddy, K.R., dan Patrick, W.H., 1984. Nitrogen Transformations and Loss in Flooded Soils and Sediments. J. CRC Crit. Rev. Env. Control, 13:273-309.

Ridha, M.T., dan Cruz, E.M., 2001. Effect of Biofilter Media on Water Quality and Biological Performance of The Nile Tilapia Oreochromis Niloticus L. Reared in a Simple Recirculating System. Aquacultural Engineering, 24:157–166.

Ray, A.J., Lewis, B.L., Browdy, C.L. dan Leffler, J.W., 2010. Suspended Solids Removal to Improve Shrimp (Litopenaeus vannamei) Production and an Evaluation of a Plant-Based Feed in Minimal-Exchange, Superintensive Culture Systems. Aquaculture, 299:89–98.

Schryver, P.D., Crab, R., Defoirdt, T., Boon, N. dan Verstraete, W., 2008. The Basics of Bio-Flocs Technology: The Added Value for Aquaculture. Aquaculture, 277:125–137.

Spellman, F.R., 2004. Mathematics Manual for Water and Wastewater Treatment Plant Operators. CRC Press LLC, New York.

Tchobanoglous G., Burton F.L., Stensel H.D., 2003. Wastewater Engineering : Treatment, Disposal, and Reuse. Mc Graw Hill Inc. New York.

Tosepu, R., 2012. Laju Penurunan Logam Berat Plumbum (Pb) dan Cadmium (Cd) oleh Eichornia Crassipes dan Cyperus Papyrus. J. Manusia & Lingkungan, 19(1):37–45.

True, B., Johnson, W., dan Chen, S., 2004. Reducing Phosphorus Discharge from Flow-Through Aquaculture III: Assessing High-Rate Filtration Media for Effluent Solids and Phosphorus Removal. Aquacultural Engineering, 32:161–170.

Truong, P., Van, T.T., dan Pinners, E., 2008. The Vetiver System for Prevention and Treatment of Contaminated Water And Land. TVN-series2-2pollution.htm.

Truong, P., dan Hart, B., 2001. Vetiver System for Wastewater Treatment. Technical Bulletin no. 2001/21. Pacific Rim Vetiver Network. Office of the Royal Development Projects Board, Bangkok.

Truong, P., dan Loch, R., 2004. Vetiver System For Erosion And Sediment Control. ISCO 2004 - 13th International Soil Conservation Organisation Conference, Brisbane.

Twarowska, J.G., Westerman, P.W., dan Losordo, T.M., 1997. Water Treatment and Waste Characterization Evaluation of an Intensive Recirculating Fish Production System. Aquacultural Engineering, 16:141-147.

Vimala, Y., dan Kataria, S.K., 2004. Physico-Chemical Study of Vetiver in Wetland Soil Reclamation. Dept of Botany, CCS University, Meerut.

Wang, L.K, Tay, J.H., Tay, T.L., dan Hung, Y.T., 2010. Environmental Bioengineering. Volume 11 Handbook of Environmental Engineering. Humana Press, Springer New York.

Yang, Q., Liu, X., Peng, C., Wang, S., Sun, H., dan Peng, Y., 2009. N2O Production during Nitrogen Removal via Nitrite from Domestic Wastewater: Main Sources and Control Method. Environmental Science & Technology, 43(24):9400-9406.



DOI: https://doi.org/10.22146/jml.18743

Article Metrics

Abstract views : 6921 | views : 5541

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Jurnal Manusia dan Lingkungan



JML Indexed by:

  

Web
Analytics View My Stats